Preference heterogeneity and optimal capital income taxation

Mikhail Golosov a, Maxim Troshkin e, Aleh Tsyvinski b, Matthew Weinzierl c,d,⁎

a Princeton University, United States
b Yale University, United States
c HBS, United States
de NBER, United States
f Cornell University, United States

A R T I C L E I N F O

Article history:
Received 11 July 2011
Accepted 15 October 2012
Available online 12 November 2012

Keywords:
Optimal taxation
Capital taxation
Saving
Preference heterogeneity

A B S T R A C T

We examine a prominent justification for capital income taxation; goods preferred by those with high ability ought to be taxed. In an environment where commodity taxes are allowed to be nonlinear functions of income and consumption, we derive an analytical expression that reveals the forces determining optimal commodity taxation. We then calibrate the model to evidence on the relationship between skills and preferences and extensively examine the quantitative case for taxes on future consumption (saving). In our baseline case of a unit intertemporal elasticity, optimal capital income tax rates are 2% on average and 4.5% on high earners. We find that the intertemporal elasticity of substitution has a substantial effect on optimal capital taxation. If the intertemporal elasticity is one-third, the optimal capital income tax rates rise to 15% on average and 23% on high earners; if the intertemporal elasticity is two, the optimal rates fall to 0.6% on average and 1.6% on high earners. Nevertheless, in all cases that we consider the welfare gains of using optimal capital taxes are small.

1. Introduction

A prominent justification for positive capital income taxation is that goods preferred by high-ability individuals ought to be taxed because consumption of these goods provides a signal of individuals' otherwise unobservable ability. If individuals' abilities are positively related to preferences for saving, this argument implies that capital income should be taxed. The key exposition of this justification is Saez (2002). Saez shows that a small linear tax on a commodity preferred by individuals with higher ability generates a smaller efficiency loss than does an increase in the optimal nonlinear income tax that raises the same revenue from each individual. He applies this logic to capital income taxation and concludes that, assuming that the discount rate is negatively correlated with skills, interest income ought to be taxed. Importantly, Banks and Diamond (2008) in the chapter on direct taxation in the Mirrlees Review use this justification as one of the essential arguments for why policymakers ought to tax capital. Commissioned by the Institute for Fiscal Studies, the Mirrlees Review is the successor to the influential Meade Report of 1978 and is the authoritative summary of the current state of tax theory as it relates to policy. Their chapter concludes: "With the plausible assumption that those with higher earnings abilities discount the future less (and thus save more out of any given income), then taxation of saving helps with the equity-efficiency trade-off by being a source of indirect evidence about who has higher earnings abilities and thus contributes to more efficient redistributive taxation."

We study the case for taxing goods preferred by those with high ability when commodity taxes are allowed to be nonlinear functions of both income and consumption. In particular, we focus on the taxation of future consumption (i.e., saving). In other words, this paper addresses the question whether taxing capital is a good or a bad idea in an environment with heterogeneous discount factors. We analytically show that heterogeneity in preferences across goods which is perfectly correlated with income-earning ability adds a force calling for nonlinear taxation that discourages lower earners

1 A relationship between ability and preferences may exist for goods other than future consumption, as suggested, e.g., by the quotation from Saliéni below with regard to goods usually considered luxury items. Taxation of such goods may be difficult, however, due to a possible tax arbitrage. Also, it is important to note that a relationship between income and preferences does not merit differential commodity taxation.

from consuming a good preferred by high earners. These optimal distortions encourage effort among high earners by threatening a larger distortion to their choices if they earn less. Quantitatively our main finding is that, for a plausibly calibrated model, preference heterogeneity of this type recommends capital income tax rates that are 2% on average and converge to 4.5% for high incomes. Tax rates can be substantially higher if the intertemporal elasticity of substitution is lower. In all cases, however, the welfare gains due to these capital income taxes are small. Our work is in the line of recent research, such as Golosov and Tsyvinski (2006), Ales and Maziero (2009), Kocherlakota and Pistaferri (2007, 2009), and Weizsäer (2011), that use micro level data to evaluate the predictions of dynamic optimal policy models.

Our specific results are as follows. We first derive analytical expressions that determine the shape of optimal commodity taxation. We start in a two-type, two-commodity economy and demonstrate that the high ability type faces no distortion to its chosen commodity basket, while the low type faces a distortion away from consumption of the good preferred by the high type. We show that this simple example illustrates a key intuition: the distortion faced by a high type if it mimics a lower type is larger than the distortion that the high type faces if it truthfully reveals its type. We then examine an economy with two goods and a continuum of types where the relative preference for one good rises with ability. As in Diamond (1998), Saiz (2001), and Golosov et al. (2011a, b), we analytically study the forces driving the optimal distortions to commodity choices. Our analysis shows that the key force of optimal nonlinear commodity taxation in this setting is that it discourages the consumption of a good preferred by high earners among lower earners. The intuition is as follows. The goal of optimal tax policy (in the Mirrleesian framework) is to redistribute from high-ability workers without discouraging their work effort. The optimal use of commodity taxation then aims to increase the attractiveness of earning a high income. High-ability individuals will choose to earn more if relative marginal commodity tax rates on the goods they most value generate distortions to their consumption choices that are greater when they earn less. These distortions allow the tax authority to levy higher income taxes on high-ability individuals and redistribute more resources to those with lower ability.

We then examine the quantitative case for capital income taxation in this environment. We use data from the National Longitudinal Survey of Youth (NLSY) to calibrate the relationship between ability and intertemporal discounting, i.e., preferences for future relative to current consumption. This relationship is distinct from that between income and intertemporal discounting, which has been the focus of most of the relevant prior literature on preference heterogeneity. One exception is Benjamin et al. (2006), who find a positive relationship between ability and the holding of positive net assets, and our results are consistent with theirs. An important paper by Cagetti (2003) analyzes a related question: the relationship between education and time preferences. His finding—that higher education groups exhibit (substantially) greater preferences for saving—is consistent with the positive relationship between ability and savings preferences that we uncover in the data. For a state of the art review of earnings, consumption and life cycle choices, including environments with informational frictions, see the Handbook chapter by Meghir and Pistaferri (2011).

Our main finding is that the computed optimal capital income tax rates for empirically plausible calibrations are as follows. For the baseline example of an intertemporal elasticity of substitution equal to one, optimal rates are U-shaped in income up to a high wage and then plateau at approximately $150,000 of annual income. The optimal maximal capital income tax rate is everywhere less than 4.54%, and the population-weighted average capital income tax rate is 2%. Welfare gains from these optimal capital income taxes are negligible.

We show that these baseline results are robust to varying the form of the social welfare function and the elasticity of labor supply. In contrast, the intertemporal elasticity of substitution, which equals $\frac{1}{2}$ in our model, has a substantial effect on optimal capital income tax rates. The baseline assumption of $\gamma = 1$ is a standard benchmark in mainstream optimal tax and macroeconomic models. The smaller the intertemporal elasticity, the larger the optimal rates. For a low intertemporal elasticity ($\gamma = 3$), optimal rates rise to 15.0% on average and 23.5% on high earners, while for a high intertemporal elasticity ($\gamma = 0.5$) they rise to only 1.6%. Even when sizeable capital income tax rates are optimal, however, they still yield small welfare gains.

As an extension we also study optimal capital taxation in a stochastic setting in which there is a relationship between ex post ability and preferences over goods consumed within a period. We show that this relationship does not affect the optimal intertemporal distortion: i.e., the inverse Euler equation as in Golosov et al. (2003) continues to hold. Optimal distortions within the second period are similar to the results from the static model. This analysis is omitted from the current version of this paper for brevity, but it is contained in the earlier version: Golosov et al. (2010).

The idea that goods preferred by the highly able ought to be taxed has a long history in tax research and is a favorite of tax theorists. Nearly all comprehensive treatments of modern tax policy contain a section on this result. For example, Tuomala (1991) writes “…the marginal tax rates on commodities that the more able people tend to prefer should be greater;” Salanié (2003) warns “If there is a positive correlation between the taste for fine wines and productivity, then fine wines should be taxed relatively heavily (God Forbid!)”; while Kaplow (2008a) argues “it tends to be optimal to impose a heavier burden on commodities preferred by the more able and a lighter burden on those preferred by the less able.” No doubt the enthusiasm for this result is due to the notion that, as Mirrlees put it “This prescription is most agreeable to common sense.” In other words, taxes on goods preferred by high-ability individuals contribute to progressivity and the redistribution of income. The starting point in the literature for this idea is Mirrlees (1976, 1986), who shows that goods prefered by the able ought to be taxed. His results are on the ratio of after-tax to pre-tax prices for an individual’s marginal purchase of a good, so they impose no linearity or income-independence constraints on optimal taxes. His results do not, however, tell us how these taxes ought to vary with the distribution of abilities or the details of individual preferences. Perhaps in part to make progress along this dimension, subsequent work often focused on linear, income-independent commodity taxes in the presence of preference heterogeneity (such as Saiz, 2002, or Blomquist and Christiansen, 2008). Our analysis returns to the general Mirrleesian setting, characterizing optimal policy analytically and, for capital taxation, quantitatively.

A contemporaneous analysis of this issue with a focus complementary to ours is that of Diamond and Spinnewijn (2011). While we focus on the how preferences change with ability on average, they focus on heterogeneity of preferences among individuals with the same ability. In their model, individuals sort into occupations and

3 See also Pavoni and Violante (2007) for an application of optimal insurance models to the design of welfare to work programs.

4 We measure ability by the survey respondent’s score on the cognitive ability portion of the Armed Forces Qualification Test (AFQT). While it is impossible to measure ability perfectly, the AFQT score is commonly used, such as in the study of the returns to education.

5 Each individual faces, in equilibrium, a distortion to consumption choices smaller than that if he earned less, consistent with our analytical results. The simulations are performed with a bounded distribution, so there is a highest type. This highest type faces no distortion, as shown analytically in Section 4. Whether rates decline with income for a range of types just below the highest type depends on the specification of the population distribution.

6 Gordon and Kopczuk (2010) also find evidence to suggest including capital income in the tax function because of information it carries about individuals’ wages.
the task of the tax authority is to use occupation-specific linear capital taxation to ensure that high-ability individuals of all preference types choose the high-productivity occupation. Because they assume that individuals with greater preferences for saving also have a greater willingness to work, Diamond and Spinnewijn find that the tax authority should levy a linear capital tax on the high earners and a linear subsidy on the low earners. This discourages high-skilled, impatient workers from deviating to the low-productivity occupation. While important, this result depends on the absence of an intensive margin of effort and on the assumption of a positive relationship between saving preferences and the willingness to work, which may be difficult to demonstrate with available empirical evidence. It also does not consider the possibility of nonlinear capital taxation. The approach we take in this paper allows for nonlinear capital taxation and is set in the standard Mirrleesian framework where individuals choose effort. We assume no relationship between saving preferences and the willingness to work. Without such a relationship, if we were to add preference heterogeneity conditional on ability as in Diamond and Spinnewijn’s model, we conjecture that the appeal of capital taxation would decrease. Intuitively, the relationship between ability and preferences is what justifies any non-zero capital taxation in our model, so any weakening of that relationship reduces the benefits of positive capital taxation relative to its costs.

One reason why nonlinear commodity taxation has gone relatively unstudied is that it is widely considered impractical for most goods, as tax arbitrage is possible among individuals who demand different quantities of the commodity. Such anonymous trades can undermine the use of instruments that would otherwise be valuable for the planner (see Hammond, 1987; Golosov and Tsyvinski, 2007; Blomquist and Micheletto, 2008; and Bastani et al., 2010 for related results). Some commodities are less likely to be vulnerable to this arbitrage, however, particularly those that make up a substantial share of purchases and are easily monitored. Future consumption is one such good. While nonlinear taxation of capital income is not widespread, some examples exist of the more complex taxation that we model below. For example, capital income tax rates in the United States vary with the taxpayer’s total income.

The paper proceeds as follows. Section 2 provides an illustrative example of our theoretical results in an economy with two ability types and heterogeneity in preferences over two goods. Section 3 derives conditions on the optimal policy in a general model of optimal taxation with a continuum of ability types and heterogeneity in preferences. In Section 4, we calibrate the model to data from the NLSY on heterogeneous time preferences and calculate the optimal distortions for a baseline setting. In Section 5 we extensively examine the robustness of the baseline results to variation in the intertemporal elasticity of substitution, the labor supply elasticity, and the form of the social welfare function. We also compare the estimated relationship between ability and time preference to that which would be required for the prevailing capital income tax rates of developed economies to be optimal. Appendix A contains technical details referred to in the text.

2. A simple example

In this section we introduce a simple two-type example that captures the main intuition behind the more general model. We show that, in this setting, the optimal relative commodity tax discourages the consumption by the low ability agents of the good preferred by the high ability agents. In particular, the relative marginal tax (wedge) is positive on this good for the low-ability individual, while the high-ability individual faces no distortion.

There is a continuum of measure one of two types of individuals indexed by \(i \in \{ L, H \} \). The size of each group is equal to 1/2. These individuals differ in wage (skill) \(W \). When \(W_H > W_L > 0 \). The wage is private information to the agent. There are two commodities. The consumption of each commodity by an agent of type \(i \) is denoted by \(c_L \) and \(c_H \). The utility function for an individual \(i \in \{ L, H \} \) is given by:

\[
u'(c_L, c_H, \frac{y}{W})\]

where \(y_i \) denotes the amount of output (income) produced by the agent. That is, the agent \(i \) provides the amount of labor \(l \geq 0 \) to produce output \(y = y_i l \geq 0 \). The planner observes output \(y \) but not the wage \(W \) or effort \(l \). Agents’ consumption of each good \((c_L) = \frac{(y_L)}{W_L} \geq 0 \) is also observable. Let \(u_i^L \) be the partial derivative of \(u'(c_L, c_H, \frac{y}{W}) \) with respect to the \(l \)th argument. Note that these marginal utilities, and preferences in general, may depend on ability. We assume that \(u_L^L > 0 \) for \(n \in \{1, 2\} \) and \(u_L^<0 \).

The planner’s problem is a mechanism design problem in which the mechanism assigns consumption and income allocations to each wage type reported by agents. The planner designs the mechanism to maximize a utilitarian social welfare function.

Problem 1. Planner’s problem in two-type example:

\[
\max \left\{ \sum_i u_i' \left(c_L, c_H, \frac{y_i}{W_i} \right) \right\}
\]

subject to the incentive compatibility constraint

\[
u_L^H \left(c_L, c_H, \frac{y_L}{W_L} \right) \geq \nu_L^H \left(c_L, c_H, \frac{y_H}{W_H} \right)
\]

and the feasibility constraint

\[
\sum_i (y_i - c_i^L - p_2 c_i^H) \geq 0.
\]

Constraint (2) is an incentive compatibility constraint stating that an individual of type \(i = h \) prefers the consumption and income bundle intended for it by the planner, \((c_L^h, c_H^h, y^h) \), to a bundle \((c_L^l, c_H^l, y^l) \) allocated to an individual of type \(i = l \). Constraint (3) is feasibility, where we assume that the marginal rate of transformation of consumption commodities is equal to the price ratio \(\frac{1}{p_2} \).

If the wage \(W \) is observable to the planner, the incentive compatibility constraint (2) does not apply and the optimal policy leaves the consumption margin undistorted for both ability types.

Now, consider a program with unobservable wages. Let \(\mu \geq 0 \) be the multiplier on constraint (2). From the first order conditions for consumption, we obtain the following expressions for the marginal rate of substitution between consumption commodities for the low-wage individual, type \(i = l \):

\[
\frac{u_L^L (c_L, c_H, \frac{y}{W})}{u_L^H (c_L, c_H, \frac{y}{W})} = \frac{1 - \frac{\partial u_i^L (c_L, c_H, \frac{y}{W})}{\partial (c_L, c_H, \frac{y}{W})} W_H}{\frac{\partial u_i^H (c_L, c_H, \frac{y}{W})}{\partial (c_L, c_H, \frac{y}{W})} W_L}.
\]

The analogous expression for the high-wage individual has the right-hand side equal to \(1/p_2 \).

Eq. (4) shows that if the multiplier \(\mu \) on the incentive compatibility constraint is not equal to zero, then the consumption choices of the low-ability individual may be distorted. That is, the marginal rate of substitution \(\frac{\partial u_i^L}{\partial c_L} \) may be different from the marginal rate of transformation, \(\frac{1}{p_2} \). In contrast, the high-ability individual is left undistorted.

Now, suppose we impose a condition requiring that if all individuals are given the same consumption and income allocation, \((c_L^L, c_H^L, y) \), the
marginal utility of good 2 relative to good 1 is higher for the high-ability individual (type \(i = h\)) than for the low-ability individual (type \(i = l\)). This condition on the relative shape of indifference curves between goods for individuals of different ability levels resembles that discussed by Mirrlees (1976) in Eq. (37) of his treatment of this topic.\(^8\)

Assumption 1. The utility function \(u\) satisfies:

\[
\frac{u_i^1(c_1, c_2, \frac{y_i}{c_1})}{u_i^1(c_1, c_2, \frac{y_i}{c_2})} > \frac{u_i^2(c_1, c_2, \frac{y_i}{c_2})}{u_i^2(c_1, c_2, \frac{y_i}{c_1})}
\]

(5)

for any \((c_1, c_2, y) \geq 0\).

The first order conditions, together with **Assumption 1**, imply a proposition characterizing the distortions in the optimal allocation.

Proposition 1. Suppose that \(\{c_i^1, c_i^2, y_i\}\) is an optimal allocation solving Eqs. (1) through (3). Then the optimal choice of consumption for the high-ability individual \((i = h)\) is not distorted. Suppose that **Assumption 1** holds. Then the optimal choice of consumption for the low-ability agent \((i = l)\) is distorted away from good 2 in favor of good 1:

\[
\frac{u_i^1(c_i^1, c_i^2, \frac{y_i}{c_i^1})}{u_i^1(c_i^1, c_i^2, \frac{y_i}{c_i^2})} < 1
\]

This Proposition states that if good 2 is particularly enjoyed by high-ability workers, the planner should impose a distortion (i.e., a positive relative tax)\(^9\) on the consumption of good 2 by the low-ability workers (but not on the consumption of that good by high-ability workers). The intuition for this result is as follows. The planner wants to discourage a high-ability individual from deviating from giving the true signal about his ability level that he is a low type. A high-ability agent finds deviating less attractive if doing so causes him to face a positive relative tax on the good that he values highly. The cost to the planner of such a positive relative tax is a distortion in the consumption choices by the low-ability agent. **Assumption 1** ensures that the costs of such distortion are smaller than the gain from relaxing the incentive compatibility constraint.

It is important to be clear that this result depends on preferences varying by ability level, not income. In particular, it does not apply to goods with an income elasticity of demand greater than one but for which preferences are unrelated to ability. For those goods, the inequality in Eq. (5) would be an equality because each type would have the same ratio of marginal utilities given the same consumption and income bundle. Instead, the case for differential taxes requires the high-ability individuals to prefer good 2 even when at the same income level as the low-ability individuals.

Related to Proposition 1, we now derive a second result characterizing the design of optimal nonlinear commodity taxes. This result compares the distortions that individuals face under the optimal policy when they reveal their type and when they mimic a lower type. We call the latter the “deviator’s distortion” to contrast it with the distortion faced by individuals who truthfully reveal their types.

Definition 1. The “deviator’s distortion (\(\tau_i^j\))” is defined as \(\tau_i^j\) (for \(i \neq i^*\)):

\[
\tau_i^j = \frac{u_i^1(c_i^1, c_i^2, \frac{y_i}{c_i^1})}{u_i^2(c_i^1, c_i^2, \frac{y_i}{c_i^2})}.
\]

In words, this measures the distortion to the consumption choices of an individual of type \(i\) who reports being of type \(i^*\) and receives the latter’s allocation of consumption and income.

We now state the following corollary.

Corollary 1. Suppose that \(\{c_i^1, c_i^2, y_i\}\) is an optimal allocation solving Eqs. (1) through (3). Then the optimal choice of consumption for the high-ability agent \((i = h)\) is distorted away from good 2 in favor of good 1 more strongly by the “deviator’s distortion (\(\tau_i^h\))” than by the distortion the high-ability agent faces if it reveals its type. Formally,

\[
\frac{u_i^1(c_i^1, c_i^2, \frac{y_i}{c_i^1})}{u_i^1(c_i^1, c_i^2, \frac{y_i}{c_i^2})} < \frac{u_i^2(c_i^1, c_i^2, \frac{y_i}{c_i^1})}{u_i^2(c_i^1, c_i^2, \frac{y_i}{c_i^2})} = 1
\]

\(P_2\)

Proof. This result follows immediately from the previous Proposition and **Assumption 1.**

Corollary 1 helps with understanding the role of optimal commodity taxes and shows that the planner encourages individuals to exert effort by threatening them with higher distortions to their consumption choices if they earn less. The relevant distortions these individuals would face if they earned less are not the distortions faced by lower-ability individuals who tell the truth about their type, because preferences differ with ability. Specifically, because higher ability individuals prefer good 2 in our example, a distortion away from good 2 as perceived by type \(i^*\) is perceived to be more distortionary by type \(i\) with \(w^i > w^j\). This “deviator’s distortion (\(\tau_i^j\))” adds an incentive for high ability individuals to exert effort.

3. Model

In this section, we set up a model with a continuum of ability types, as in the classic Mirrlees (1971) framework. Agents are heterogeneous in their preferences. We derive a formula for optimal relative commodity taxes that are allowed to be nonlinear in consumption and to depend on income, and we explain the novel components of this formula relative to models without preference heterogeneity.

There is a continuum of measure one of individual agents. Agents are indexed by \(i \in [0, 1]\). Individuals differ in their abilities, which we measure with their wages, denoted by \(w^i\) and distributed according to the density function \(f(w)\) over the interval \([w_{	ext{min}}, w_{	ext{max}}]\). Ability is private information to the agent. Each individual has the continuous and differentiable utility function:

\[
U(w^i) = u(c_i^1, c_i^2, \frac{y_i}{c_i^1}, w^i).
\]

Utility is a function of the consumption of good 1, \(c_i^1 \geq 0\), and the consumption of good 2, \(c_i^2 \geq 0\), as well as of labor effort \(l_i^j \geq 0\).\(^{10}\) Superscripts \(i\) on consumption and labor denote the values of these variables for the individual, and the partial derivatives of utility take the following signs: \(u_i^1(\cdot) > 0\), \(u_i^2(\cdot) > 0\), \(u_i^1(\cdot) < 0\). The output \(y^i = w^i l_i^j \geq 0\). Utility is also a function of the wage \(w^i\) because we assume

\(^{10}\) Extending the model to more than two goods (for example, to more than two periods) is straightforward. The analytical results on optimal distortions are direct analogues of those derived below.
that preferences across consumption goods are a function of ability. This assumption simplifies the planner’s problem by retaining a single dimension of heterogeneity. Two or more dimensions introduce a multiple screening problem for which a tractable analytical approach at this level of generality has not been developed.\(^1\) Later, we will parameterize the influence of ability on preferences with the function \(\alpha(w^i)\) where \(\alpha(w^i) > 0\) for all \(w^i\).

A social planner maximizes a utilitarian social welfare function. The planner’s problem is given as follows.

Problem 2.

\[
\max \{c_1, c_2, y \} \int_{w_{min}}^{w_{max}} u(c_1, c_2, y, w) f(w) dw
\]

subject to the feasibility constraint

\[
\int_{w_{min}}^{w_{max}} (y - c_1 - p_2 c_2) f(w) dw \geq 0,
\]

and the incentive compatibility constraint

\[
u_0 \left(c_1, c_2, y, w \right) \geq u_0 \left(c_1, c_2, y, w \right),
\]

for all \(i, j \in [0, 1]\).

Constraint (9) is the incentive compatibility constraint ensuring that an individual of type \(i\) prefers the consumption and income allocation intended for it by the planner to the allocations intended for all other individuals of type \(j\). As in the previous section, the relative price of \(c_2\) is \(p_2\).

It is standard to rewrite the planner’s problem with explicit tax functions. To characterize the form of these optimal tax functions, we follow the formal techniques of the Mirrleesian literature. We start with the statement of the problem solved by each individual, who takes the tax functions as given.

Problem 3. Individual’s problem, \(i \in [0, 1]\):

\[
\max \{c_1, c_2, y \} \int_{w_{min}}^{w_{max}} u(c_1, c_2, y, w) f(w) dw
\]

subject to the individual’s after-tax budget constraint,

\[
w^i l + T(w^i l) - \left(c_1 + t^i (w^i l, c_1) - p_2 (c_2 + t^2 (w^i l, c_2)) \right) \geq 0.
\]

The budget constraint requires a careful examination. The nonlinear income tax \(T(w^i l): R_+ \rightarrow R\) is a continuous, differentiable function of income \(y = w^i l\). The two other tax functions, \(t^i (w^i l, c_1)\), \(t^2 (w^i l, c_2): R_+ \times R_+ \rightarrow R\) are commodity tax functions that we also assume to be continuous and differentiable. Importantly, note that we explicitly allow for the taxation of each commodity to be nonlinear in consumption of that good and to depend on income.\(^1\) The budget constraint (11) has the multiplier \(\mu^i(l) \geq 0\).

\[\text{11} See Klevén et al. (2009), Tarkiainen and Tuomala (2007), and Judd and Su (2006) for discussions of the approach to optimal taxation with multi-dimensional heterogeneity.\]

\[\text{12} These tax instruments are notionally redundant, in that a single tax function of the consumption of one good and income would be sufficient to characterize the full policy. Separating taxes into these functions aids interpretation and has no effect on the analytical or quantitative results of the paper, all of which describe the wedges between the constrained optimal allocation of resources and what individuals would choose if undistorted. The separate tax functions are useful only because they provide intuitively-appealing labels for those wedges.\]

In this approach, the social planner’s problem is as follows:

Problem 4. Planner’s problem

\[
\max \{T^i, t^1, t^2\} \int_{w_{min}}^{w_{max}} U(w) f(w) dw
\]

subject to the feasibility constraint

\[
\int_{w_{min}}^{w_{max}} (T^i (w^i) + t^1 (w^i, c_1) + p_2 t^2 (w^i, c_2)) f(w) dw \geq 0.
\]

and incentive compatibility, which is that each individual \(i \in [0, 1]\) solves the optimization problem in Eq. (10), given tax policies \(T(w^i l), t^1 (w^i l, c_1), \text{ and } t^2 (w^i l, c_2)\).

In words, the social planner chooses a tax system to maximize utilitarian social welfare subject to two constraints. First, the budget constraint requires that total tax revenue be non-negative (we assume no government spending for simplicity). Second, each individual will respond to the tax system by choosing labor supply and a consumption bundle that maximize his or her utility.

3.1. The optimal commodity choice wedge

We now derive a formula that allows us to study the forces determining the optimal commodity wedge, i.e., the wedge distorting commodity choices. We formulate the Hamiltonian from the planner’s problem (7) using the budget constraint, envelope condition, and first order condition with respect to labor \(l\) from the individual’s utility maximization problem:

\[
H(w^i) = (U(w^i) + \lambda (w^i l - c_1 - p_2 c_2)) f(w^i) + \phi \left(u_{w^i} (\cdot) - \frac{f u_{w^i} (\cdot)}{w^i} \right).
\]

where subscripts denote partial derivatives and \((\cdot)\) denotes the set of arguments of the utility function, \((c_1, c_2, f, w^i)\). The first term of the Hamiltonian is the utility of the individual with wage \(w^i\). The second is the government’s budget constraint multiplied by its multiplier \(\lambda\). The third term is the evolution of the state variable \(U(w^i)\) with respect to \(w^i\), as derived above, and is multiplied by the co-state variable \(\phi\).\(^13\)

To solve for the optimal policy, choose \(l\) and \(c_1\) as the control variables, with \(c_2\) an implicit function defined by the budget constraint. The first order condition with respect to \(c_1\) combined with the condition that individuals will set the ratio of marginal utilities from the consumption goods equal to the price ratio multiplied by the marginal tax ratio, yields the following expression for the distortion to individual \(i\)’s consumption basket:

\[
1 + \frac{\lambda f(w^i) - u_{w^i} (\cdot) - \frac{f u_{w^i} (\cdot)}{w^i}}{p_2} = \frac{\lambda f(w^i) - u_{w^i} (\cdot) - \frac{f u_{w^i} (\cdot)}{w^i}}{p_2}.
\]

\[\text{13} The above procedure uses the so-called first order approach, where the first-order conditions of the individual’s problems are assumed to be sufficient, not just necessary, conditions for a maximum. We check that these are sufficient in all numerical simulations we perform in Section 4.\]
To further characterize the optimal distortion to commodity purchases given by Eq. (15), we solve for the multipliers λ and $\phi(w')$ under the following assumption:

Assumption 2. Utility function u in Eq. (6) is separable in consumption and labor:

$$u_{w'c'_1}(c'_1, c'_2, \ldots, w') = u_{w'c'_2}(c'_1, c'_2, \ldots, w') = 0$$

(16)

The following proposition derives an expression for optimal commodity taxes.

Proposition 2. Given Assumption 2 on the individual utility function, the solution to the planner’s problem (12) satisfies:

$$\begin{align*}
1 + t'_1(w', c'_1) \cdot \frac{p_1}{1 + t'_2(w', c'_2)} = & \quad A_1(w') + \frac{c(w)}{p_1} \\
\frac{p_2}{1 + t'_2(w', c'_2)} = & \quad A_2(w') + p_2 \frac{c(w)}{p_1}
\end{align*}$$

(17)

where

$$A_1(w') = u_{w'c'_1}, \quad A_2(w') = u_{w'c'_2}$$

(18)

$$B(w) = p_2 \left(\frac{w-w_{min}}{\min_{j} w_j - w_{min}} \right) f(w) \left(1 - \frac{1-F(w)}{F(w_{min})} \right) \int_{w_{min}}^{w} u_{c'_j} f(w') dw'$$

(19)

$$C(w) = f(w')$$

(20)

Proof. In Appendix A, we derive the following expressions for λ and $\phi(w')$:

$$\lambda = \frac{1}{\int_{w_{min}}^{w} \frac{1}{\min_{j} w_j - w_{min}} f(w') dw'}$$

(21)

$$\phi(w') = (1-F(w)) \left(1 - \frac{1}{\int_{w_{min}}^{w} \frac{1}{\min_{j} w_j - w_{min}} f(w') dw'} \right)$$

(22)

By using these results in expression (15), we obtain Eq. (17).

As with the conditions for optimal marginal income tax rates from, e.g., Diamond (1998), Saez (2001), and Golosov et al. (2011b), expression (17) is not a fully closed-form solution as it depends on optimal utility and consumption levels. Instead, it is a representation of the first order conditions of the optimal problem allowing us to examine the forces affecting optimal taxes.

We identify three important forces at play. Two are familiar from previous results in Mirrleesian optimal taxation, for instance from the formulas for the income tax in Diamond (1998) and Saez (2001). However, they have no impact in our model without the existence of an additional, novel, force.

The novel force affecting distortions in result (17) is the disparity between $A_1(w')$ and $A_2(w')$, which are the derivatives of the marginal utility of consumption of goods 1 and 2 with respect to the wage. This disparity determines whether policy discourages consumption of good 1 or good 2. If $A_1(w')$ and $A_2(w')$ are equal (for instance, if they are both zero), there is no distortion to consumption choices in the optimal policy. If, instead, higher-ability workers relatively prefer good 2, then $u_{w'c'_2} > 0$ or $u_{w'c'_2} > 0$, so $A_1(w') > 0$ and $A_2(w') > 0$. In that case, because both $B(w')$ and $C(w')$ are non-negative, the ratio on the right-hand side of Eq. (17) is less than 1 and the optimal distortion discourages marginal consumption of good 2. In other words, preferences over goods that vary with ability introduce a reason for using differentiated marginal commodity taxes to provide incentives for high-ability individuals to exert work effort.

Whether the distortion to consumption choices increases or decreases with wages depends on the behavior of $A_1(w')$ and $A_2(w')$ as the wage level increases. Though a full characterization depends on the specific form of the utility function, the lower marginal utilities of consumption that come with higher w' will push $A_1(w')$ and $A_2(w')$ toward zero as the wage level increases, thus reducing the size of this distortion at higher wages. Intuitively, marginal commodity tax rates that decline with income on the good more valued by high-ability individuals will encourage them to earn more, allowing the tax authority to levy higher income taxes on them and redistribute more resources to those with lower ability.

The two forces familiar from previous optimal tax analyses generate the ratio $\frac{c(w)}{p_1}$ in Eq. (17). This ratio can be interpreted as the cost-benefit ratio of the distortion, so a higher value for it reduces the optimal distortion by offsetting the disparity between $A_1(w')$ and $A_2(w')$.

First, $B(w')$ measures the redistributive benefit of a distortion at wage w'. That distortion allows the planner to shift income from those with wages above w' to the population as a whole, raising total welfare. Formally, consider a two-part perturbation in the planner’s allocations made possible by this distortion. First, the planner lowers utility by 1 unit for each individual above w' by extracting consumption from them while preserving incentive compatibility. The planner extracts $p_2 \int_{w_{min}}^{w} \frac{1}{u_{c'_j}} f(w') dw'$ in resources from this action, and it lowers social welfare by $(1-F(w'))$ units. Second, the planner raises utility by $(1-F(w'))$ units for each individual in the population by granting them additional consumption while preserving incentive compatibility. The cost to the planner of this action is $p_2 \int_{w_{min}}^{w} f(w') dw'$, and it raises social welfare by $(1-F(w'))$ units. The net change in social welfare from these two actions is zero, while the net resources raised by the planner is:

$$p_2 \int_{w_{min}}^{w} \frac{1}{u_{c'_j}} f(w') dw' - p_2 \int_{w_{min}}^{w} \frac{1}{u_{c'_j}} f(w') dw'$$

Rearranging this result, these two actions yield excess resources if:

$$B(w') > 0,$$

so that the planner can raise social welfare through redistribution whenever $B(w')$ is positive. Moreover, the greater is $B(w')$, the more valuable is this distortion to the planner. Intuitively, higher-ability workers have lower marginal utilities of consumption, and the more concave is utility in good 2 above wage w', the more valuable is the redistribution made possible (i.e., incentive compatible) by the commodity choice distortion at w'.

Second, $C(w')$ measures the cost of the distortion at wage w' because it is the share of the population whose choices are directly affected by a commodity tax at w'. When this share is low, the optimal consumption distortion (if non-zero) is larger, as the planner wants to concentrate distortions on small sub-populations all else the same. The ratio $\frac{c(w)}{p_1}$, which is multiplied by p_2 in the denominator because if $A_1(w')=A_2(w')=0$, the undistorted marginal rate of transformation equals $\frac{1}{p_1}$.

14 Note that this action is possible only because of the distortion at w'. Otherwise, individuals above w' would respond by earning less.
We can derive several specific results that characterize the optimum and aid intuition. First, for the top type in a bounded ability distribution, \((1 - f(W_{\text{max}})) \) is zero, and the result (17) reduces to:

\[
\begin{align*}
\frac{1 + f_1(w_{\text{max}})}{p_2 + f_2(w_{\text{max}})} &= 1 \\
\end{align*}
\]

so the commodity distortion is zero on the highest ability worker.\(^{15}\)

Second, the distortion is also zero on the lowest ability worker, as \(B(w_{\text{min}}) = 0 \). Third, if we restrict attention to commodity distortions that are linear functions, our model shows that goods preferred by the highly able ought to be taxed.

In this model equals: 4.1. Calibrating the model

\[
\begin{align*}
&\frac{1 + f_1(w_{\text{max}})}{p_2 + f_2(w_{\text{max}})} = p_2. \\
&
\end{align*}
\]

The results of Sections 2 and 3 show the forces affecting optimal commodity taxation when preferences over goods vary with ability. We now turn to a quantitative study of this topic when the commodities in the utility function are current and future consumption (savings).

We begin our quantitative analysis of optimal capital income taxation by discussing the existing literature on the relationship between time preferences and income. That relationship is distinct from the relationship that matters for this paper: that between time preferences and ability. We provide a calibration of time preferences by ability level (and thus wages) by using data from the National Longitudinal Survey of Youth. We then simulate the optimal capital income taxes justified by these estimates and relate our results to the analytical expression (17) from the previous section.

4. Optimal capital income taxes in a calibrated model

The results of Sections 2 and 3 show the forces affecting optimal commodity taxation when preferences over goods vary with ability. We now turn to a quantitative study of this topic when the commodities in the utility function are current and future consumption (savings).

With the goal of calibrating our model, we provide evidence on the relationship between saving preferences and ability. In brief, our approach is to use data on income and net worth from the National Longitudinal Survey of Youth (NLSY) and a standard model of an individual’s intertemporal utility maximization problem to compute a discount factor for each level of ability in the sample. Next, we regress these discount factors on the log of ability and other personal characteristics observed by the NLSY, where we measure ability with individuals’ scores on a widely-used aptitude test.\(^{17}\) The coefficient on ability in this regression allows us to predict, holding fixed other personal characteristics, a discount factor for each level of ability. Using NLSY data on wages by ability level, we are then able to estimate a functional relationship between discount factors and wages, the key inputs to our policy simulations. To summarize, we estimate an elasticity of the annual discount factor \(\beta \) to the wage \(w \) of 0.0036. For example, a change in the wage from $20 to $24 per hour, a 20 percent increase, corresponds to a change in the annual discount factor from 0.9604 to 0.9610, a 0.07 percent increase.

Throughout the numerical analysis, we use the following utility function. For consistency with the previous section, we consider a utility function that is separable in consumption and labor. Preferences over goods are normalized so that they do not mechanically affect labor effort, as detailed in Appendix A. In addition, we assume that utility from consumption is constant relative risk aversion (CRRA) and the disutility from labor effort is isoelastic:

\[
U = \frac{\alpha(w)}{1 + \alpha(w)} \gamma \left(\frac{c_1}{1 - \gamma} \right)^{1 - \gamma} \left(\frac{c_2}{1 - \gamma} \right)^{1 - \gamma} + \frac{1}{1 + \alpha(w)} \gamma \left(\frac{p_2}{1 - \gamma} \right)^{1 - \gamma} \left(\frac{f}{\sigma} \right)^{\alpha}. \tag{23}
\]

\(^{15}\) If the ability distribution is unbounded, as argued by Saez (2001), the pattern of rates near the top of the distribution depends on the specification of preferences. Formally, if \(A_1 \) and \(A_2 \) decrease quickly enough with \(w \), the optimal distortion falls with wages as well.

\(^{17}\) Scholz et al. (2006) estimate a detailed model of household optimal saving and find that more than 80% of the variation in household wealth in their sample can be explained without preference heterogeneity. This evidence suggests that, to the extent our simpler procedure omits important explanatory factors, we overstate the extent of preference heterogeneity.
As a baseline case, we assume $\gamma = 1$ and $\sigma = 3$. With $\gamma = 1$, this utility function simplifies to

$$U = \frac{\alpha(w)}{1 + \alpha(w)} \ln c_1 + \frac{1}{1 + \alpha(w)} \ln c_2 - \frac{1}{\sigma} \left(\frac{1}{\beta}(\tilde{f})^{\gamma} \right). \quad (24)$$

We now provide some more details on our calibration, beginning with the data. The NLSY consists of a nationally representative sample of individuals born between 1957 and 1964, first interviewed in 1979, and interviewed annually or biannually since. The NLSY contains data on individuals’ net worth and income over time, allowing us to roughly estimate saving rates as described below.

The key advantage of the NLSY for our purposes is that it includes a direct measure of ability. This allows us to relate a measure of ability, not income, to time preferences. In 1980, the NLSY administered the Armed Forces Qualification Test (AFQT) to 94% of its participants. This test measured individuals’ aptitudes in a wide range of areas, including some mechanical skills relevant to military service.

We use an aggregation of scores in some of the areas covered by the AFQT as the indicator of ability for each head of household whose family income and net worth we will measure. This aggregation, the AFQT89, is calculated by the Center for Human Resource Research at the Ohio State University, as follows:

Creation of this revised percentile score, called AFQT89, involves (1) computing a verbal composite score by summing word knowledge and paragraph comprehension raw scores; (2) converting subtest raw scores for verbal, math knowledge, and arithmetic reasoning; (3) multiplying the verbal standard score by two; (4) summing the standard scores for verbal, math knowledge, and arithmetic reasoning; and (5) converting the summed standard score to a percentile.

Our measure of preferences is based on the discount factor δ implied by using NLSY data on individuals’ household income paths and net worth in a simple model of optimization described in Appendix A. Intuitively, the higher is final net worth relative to the cumulative value of income, the greater is the estimated δ. To give a sense for the data, in Table 1 we show the mean and standard deviations of δ by AFQT quintile.

<table>
<thead>
<tr>
<th>AFQT quintile</th>
<th>Bottom</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Top</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean δ</td>
<td>0.336</td>
<td>0.374</td>
<td>0.394</td>
<td>0.418</td>
<td>0.460</td>
</tr>
<tr>
<td>Std. dev. of δ</td>
<td>0.156</td>
<td>0.176</td>
<td>0.180</td>
<td>0.215</td>
<td>0.252</td>
</tr>
<tr>
<td>Implied $\alpha(w)$</td>
<td>1.0488</td>
<td>1.0437</td>
<td>1.0413</td>
<td>1.0387</td>
<td>1.0338</td>
</tr>
<tr>
<td>Implied $\beta(w)$</td>
<td>0.9536</td>
<td>0.9581</td>
<td>0.9603</td>
<td>0.9628</td>
<td>0.9673</td>
</tr>
<tr>
<td>Mean w</td>
<td>12.35</td>
<td>16.29</td>
<td>18.98</td>
<td>21.67</td>
<td>25.39</td>
</tr>
</tbody>
</table>

Table 1 also shows the implied values of $\alpha(w)$, the parameter of interest from the model of Section 3, and $\beta(w)$, the standard annual discount factor. The variation in δ within AFQT quintiles is large relative to the variation across wage levels. These results have their limitations for use in calibrating our model. The data are likely to be very noisy, and our inference of δ is based on a simplified model. Moreover, simple AFQT quintile means of δ are likely to be misleading, as they fail to control for variables correlated with both ability and saving behavior.

Table 2 shows the results of a regression of $\ln(\tilde{f})$ on ability as well as other observable characteristics. In particular, we control for the

\[\hat{\delta} = 0.356/\text{AFQT}^{0.026}, \]

where the constant 0.356 is pinned down by matching the value of δ for the middle AFQT quintile from Table 1 (0.394) with the mean AFQT score in that quintile (49.26). Expression (26) allows us to calculate, from the average AFQT score by quintile, a “regression-based” δ for each quintile that can be compared to the simple means in Table 1. The results are shown in Table 3, along with the implied values of $\alpha(w)$ and $\beta(w)$. Note that the median $\beta(w)$ in Table 3 is consistent with the results of Cagetti (2003), who reports a median discount factor of 0.952 for individuals with a high school education.

The final step is to relate these discount factors to wages, as wage rates are the measure of ability in the model from Section 3 that we

\[\alpha(w) = \frac{\gamma(\alpha(w)/\beta(w))^{\gamma} - 1}{\beta(w)} \]

where the calculation of “income” is described in Appendix A. This regression yields a highly significant estimate for β_4 of 0.026 (standard error of 0.004), 21,22 In words, this coefficient implies an elasticity of 0.026 for the discount factor δ with respect to ability as measured by the AFQT. For example, if ability increases by 10 percentile points from 50 to 60 (a 20 percent increase), the discount factor δ would increase from 0.394 to 0.396 (i.e., by approximately 0.47%).

These findings are consistent with the findings of the literature cited above that relates saving to income and with the findings of Benjamin et al. (2006), who find a “strong, statistically significant, and positive relationship between AFQT score and the propensity to have positive net assets” in the NLSY. Those authors, by using a different measure of time preference, report “an additional 10 percentile points of AFQT is associated with an increase of approximately 1.5 percentage points in the propensity to have positive net assets.”

The estimate of β_4 allows us to derive a value of δ for each ability level holding fixed an individual’s age, gender, and cumulative income. In particular, we use

\[\hat{\delta} = 0.356/\text{AFQT}^{0.026}, \]

where the constant 0.356 is pinned down by matching the value of δ for the middle AFQT quintile from Table 1 (0.394) with the mean AFQT score in that quintile (49.26). Expression (26) allows us to calculate, from the average AFQT score by quintile, a “regression-based” δ for each quintile that can be compared to the simple means in Table 1. The results are shown in Table 3, along with the implied values of $\alpha(w)$ and $\beta(w)$. Note that the median $\beta(w)$ in Table 3 is consistent with the results of Cagetti (2003), who reports a median discount factor of 0.952 for individuals with a high school education.

The final step is to relate these discount factors to wages, as wage rates are the measure of ability in the model from Section 3 that we

\[\text{Table 1}

<table>
<thead>
<tr>
<th>AFQT quintile</th>
<th>Bottom</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Top</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean δ</td>
<td>0.336</td>
<td>0.374</td>
<td>0.394</td>
<td>0.418</td>
<td>0.460</td>
</tr>
<tr>
<td>Std. dev. of δ</td>
<td>0.156</td>
<td>0.176</td>
<td>0.180</td>
<td>0.215</td>
<td>0.252</td>
</tr>
<tr>
<td>Implied $\alpha(w)$</td>
<td>1.0488</td>
<td>1.0437</td>
<td>1.0413</td>
<td>1.0387</td>
<td>1.0338</td>
</tr>
<tr>
<td>Implied $\beta(w)$</td>
<td>0.9536</td>
<td>0.9581</td>
<td>0.9603</td>
<td>0.9628</td>
<td>0.9673</td>
</tr>
<tr>
<td>Mean w</td>
<td>12.35</td>
<td>16.29</td>
<td>18.98</td>
<td>21.67</td>
<td>25.39</td>
</tr>
</tbody>
</table>

21 The estimate of the coefficient on $\ln(\text{AFQT})$ is 2.71E−02 (4.45E−03) if we do not control for age, age squared, or gender. 22 If we run regression (25) omitting income, the significance and point estimate of the coefficient on $\ln(\text{AFQT})$ both increase.

We also have run simulations controlling for the slope of income during the 1979–2004 period and over the past ten years for each individual. These controls reduce the coefficient on AFQT to 0.021 and 0.015, but it remains significant at the 1% level. Implied that these results imply a weaker relationship between ability and preferences. 24 Measurement error likely affects both our estimates of ability and discounting, though bias would be introduced only by error in the former. While AFQT is an imperfect measure of ability, its test reliability is very high. Moreover, if AFQT mismeasures ability, it is unclear whether that biases our results down or up. It may be that AFQT measures those parts of ability that are particularly highly correlated with preferences (i.e., ability to delay gratification and cognitive algebra), and a more accurate measure of ability would show less relationship with preferences. 25 That is, 0.356 = 0.394/(49.26)0.026. Note that we are interested in the effect of only AFQT on δ. 26
will use to simulate optimal policy. The NLSY provides data on individuals’ reported wages, and we report the average of these wages by AFQT quintile in Table 3. Assuming the same functional form as in expression (26), the values of \(\alpha(w) \) and \(\omega \) in Table 3 imply the following relationship between discounting and wages:

\[
\alpha(w) = 1.0526(w)^{-0.0036}.
\]

(27)

or

\[
\beta(w) = 0.9500(w)^{0.0036}.
\]

(28)

Expression (27) allows us to derive \(\alpha(w) \) and \(\beta(w) \) for a wide range of wages.

To simulate optimal capital income taxes using the estimated form for \(\alpha(w) \) in expression (27), we specify a wage \((w') \) distribution, calculate the implied values for \(\alpha(w') \), and numerically simulate the planner’s problem in Eq. (7). We also simulate an augmented planner’s problem that limits the planner to no capital income taxation. This enables us to calculate welfare gains from optimal capital taxation.

We use a wage distribution that starts at $4 and increases in equally-sized discrete bins. Based on Saez (2001), we assume that the distribution of the population across these wages is lognormal up to $62.50 and Pareto with a parameter value of 2.68 (following Golosov et al., 2011b) for higher wages. We calibrate the lognormal distribution with the 2007 wage distribution for full-time workers in the United States as reported in the Current Population Survey.

To measure the intertemporal wedge we use the expression:

\[
\tau(\cdot) = 1 - \frac{n(p) - 1}{r},
\]

(29)

where \(r \) is the annual rate of return to savings. The variable \(\tau(\cdot) \) measures the relative distortion toward good 1 and away from good 2 at a given income level. Under the capital income tax interpretation, \(\tau(\cdot) \) is the implicit tax on the interest income earned on good 2, i.e., capital. If this expression is positive, the tax policy is discouraging future consumption relative to current consumption. More informally, it is taxing the return to saving, so we will refer to it as the implied capital income tax.

Table 2

Regression results.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. err.</th>
<th>t-Stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>-2.62E−02</td>
<td>2.97E−02</td>
<td>-0.88</td>
</tr>
<tr>
<td>Age²</td>
<td>8.80E−04</td>
<td>3.66E−04</td>
<td>0.05</td>
</tr>
<tr>
<td>Gender</td>
<td>1.16E-02</td>
<td>9.05E−03</td>
<td>1.42</td>
</tr>
<tr>
<td>In (income)</td>
<td>1.69E−01</td>
<td>7.61E−03</td>
<td>22.15</td>
</tr>
<tr>
<td>In (AFQT)</td>
<td>2.60E−02</td>
<td>4.46E−03</td>
<td>5.82</td>
</tr>
</tbody>
</table>

Note. Observations: 7008. F-statistic: 203.98. Adjusted R-squared: 0.127. ** Indicates significance at the 1% level.

Table 3

Regression-based \(\hat{\delta} \) by AFQT quintile.

<table>
<thead>
<tr>
<th>AFQT quintile</th>
<th>Bottom</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Top</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (\hat{\delta})</td>
<td>0.378</td>
<td>0.389</td>
<td>0.394</td>
<td>0.398</td>
<td>0.400</td>
</tr>
<tr>
<td>Implied (\hat{\alpha}(w))</td>
<td>1.0428</td>
<td>1.0419</td>
<td>1.0413</td>
<td>1.0409</td>
<td>1.0406</td>
</tr>
<tr>
<td>Implied (\hat{\omega}(w'))</td>
<td>0.9585</td>
<td>0.9598</td>
<td>0.9603</td>
<td>0.9607</td>
<td>0.9610</td>
</tr>
<tr>
<td>Mean (\hat{\omega}(w'))</td>
<td>12.35</td>
<td>16.29</td>
<td>18.98</td>
<td>21.67</td>
<td>25.39</td>
</tr>
</tbody>
</table>

4.2. Optimal capital income taxes

Fig. 1 shows optimal nonlinear capital income tax rates in the baseline case (\(\gamma = 1 \) and \(\sigma = 3 \)).

Optimal capital income tax rates are U-shaped (as in Diamond 1998 and Saez 2001). They rise from $100,000 in annual income, corresponding to a wage of $40 per hour, through the point at which the Pareto tail of the wage distribution begins, at an income of around $150,000. Above that income level optimal rates plateau at around 4.5%.

The pattern of optimal rates in Fig. 1 can be better understood by examining the components of the analytical result describing optimal distortions from Section 4: expression (17). In Fig. 2A and Fig. 2B, we show the evolution of \(A_2(\omega') - A_1(\omega') \) and the ratio \(\frac{\alpha(w)}{\omega(w)} \) under the optimal policy over the income distribution, which we split at $300,000 to enable easier examination.

These figures show that, as anticipated in Section 4, the difference between the cross-partial derivatives of the marginal utilities of consumption for each good with respect to the wage, \(A_2(\omega') - A_1(\omega') \), falls as wages increase. The cost–benefit ratio of the distortion, represented by \(\frac{\alpha(w)}{\omega(w)} \), diminishes with income. Fig. 2A shows that the U-shaped pattern of optimal distortions in Fig. 1 is due to the rapid fall and then earlier stabilization of the \(A_1(\omega') - A_2(\omega') \) term, so that the optimal distortion starts out large, diminishes quickly as the high population density causes the cost–benefit ratio to be relatively larger, and then rebounds as the rate of decline in \(\frac{\alpha(w)}{\omega(w)} \) exceeds that of \(A_2(\omega') - A_1(\omega') \) around $100,000 of income. Fig. 2B shows that these two components decline at a similar rate at higher incomes. This pattern explains why optimal distortions plateau and are essentially constant at high incomes.

The increasing size of the distortions for most of the wage distribution in Fig. 1 may seem to contradict the intuition discussed above that distorting savings among lower earners will enable more efficient redistribution from higher earners. However, the equilibrium distortions shown in these figures are not the relevant distortions for an individual claiming an allocation intended for a different type.
Section 2) he faces if he claims to be type α calibrated tax treatment. Who value saving, from earning less and claiming a more generous

taxation, consistent with the analytical results above. Optimal nonlinear incentives, then, is that the "deviator's distortion" (as defined in Section 2) he faces if he claims to be type $i - 1$ is higher than the distortion he faces if he tells the truth. Fig. 3 shows the two relevant series: the "deviator's distortion ($D(i)$)" and the truth-telling distortion to type i.

The deviator's distortion always exceeds the truth-telling distortion, consistent with the analytical results above. Optimal nonlinear capital income taxation thereby discourages high-skilled individuals, who value saving, from earning less and claiming a more generous tax treatment.

The welfare gain from optimal capital income taxation given the calibrated $\alpha(w^i)$ is negligible. To measure the welfare gain, we first simulate the optimal policy when capital wedges are constrained to be zero. The planner designs bundles of total consumption and labor income, among which individuals choose. Each individual is then free to allocate his chosen total consumption across periods according to his preferences, with no distortion. This allows us to calculate the factor by which consumptions of all agents in both periods would have to be increased in the model without capital taxes to yield the same level of social welfare as in the model with the optimal taxes shown in Fig. 1. This factor is 0.00002% of aggregate consumption. The welfare gain is concentrated among low earners.

5. Robustness of baseline results

In this section we extensively examine the robustness of the baseline numerical results. We start by considering social welfare functions other than the utilitarian function assumed throughout the analysis thus far; this turns out to have little impact on our results. Next, we vary the two key parameters of the utility function: the elasticity of labor supply (ρ) and the intertemporal elasticity of substitution (β).

We find that the former matters very little while the latter substantially affects the magnitude of optimal capital income tax rates but has little effect on the welfare gains from optimal policy. Finally, we compare the degree of preference heterogeneity we observe in the data to that needed to justify a range of average capital tax rate levels.28

5.1. Alternative social welfare functions

The Utilitarian social welfare function, in which individual types are valued by the social planner according to their proportions of the total population, is a natural choice. As Vickrey (1945) and Harsanyi (1953, 1955) argued, a utilitarian social welfare function is equivalent to the expected utility function of an individual in an ex ante state when he is uncertain over his type. It is also a key benchmark in modern optimal tax studies.

Nevertheless, we may be interested in social welfare functions that are more redistributive than the utilitarian benchmark.29 Social welfare functions that are concave in individual utilities are a common variant of the utilitarian assumption in optimal tax research. Denoting social welfare with W, we can write

$$W = \int_{w_{min}}^{w_{max}} (U(w'))^\gamma f(w') dw'$$

(30)

28 We have also checked the robustness of our results to the number of periods in the model and to the size of the exogenous revenue requirement in the feasibility constraint facing the planner. Numerical simulations that allow for more than two periods, with one consumption good per period, show that optimal distortions are nearly constant across time. A revenue requirement equivalent to 15% of total income has negligible effects on optimal capital income taxes, regardless of whether those revenues are rebated lump-sum to households or used for expenditures that do not affect utility.

29 The social welfare function could, in principle, treat differently those with different preferences but the same ability. That is not possible in this environment, where preferences but the same ability. That is not possible in this environment, where preferences and ability are perfectly correlated. Lockwood and Weinzierl (2012) is an analysis of preference heterogeneity in a related but distinct setting, where preferences over consumption and leisure vary among individuals with the same ability. That work suggests that a greater role for preference heterogeneity tends to reduce the optimal extent of redistribution through the tax system. Related work on that topic includes Sandmo (1993), Boddewy et al. (2002), Kaplow (2008b), Fleurbaey and Maniquet (2006), Judd and Su (2006), and Chone and Larroque (2010).
where \(\rho \) parameterizes the concavity of social welfare and where \(\rho = 1 \) for a utilitarian social welfare function. We consider two more concave versions of expression (30), where \(\rho = 0.5 \) and \(\rho = 0.25 \).

The baseline results for optimal capital income taxes turn out to be robust to these different assumptions on social preferences. Fig. 4 shows optimal rates for these three social welfare functions under our baseline parameter assumptions of \(\gamma = 1 \) and \(\sigma = 3 \).

The gaps between the optimal rate schedules in Fig. 4 are small over the entire income distribution. The rates for high earners plateau at 4.6%, 4.6%, and 4.5%. The differences are slightly larger at lower wage levels, as the planner maximizing a more concave social welfare function uses larger distortions on low earners’ consumption choices to enable greater incentive-compatible transfers to them.

5.2. Elasticity of labor supply

The Frisch elasticity of labor supply equals \(\frac{1}{\rho} \) in our model. The baseline assumption of \(\sigma = 3.0 \) implies an elasticity of 0.5, consistent with the evidence in Chetty (2010). Fig. 5 shows optimal capital income tax rates for this baseline value and two alternative values: \(\sigma = 1.5 \) implies an elasticity of 3.0, while \(\sigma = 6.0 \) implies an elasticity of only 0.2.

Despite the wide variation in labor supply elasticities covered by Fig. 5, there are only minor differences in optimal capital income tax rates. At high incomes, the optimal rates plateau at similar rates, and there is a steep increase beginning around $100,000 of annual income. The only sizeable difference is for the lowest skilled, who face high rates when the labor supply elasticity is high and low rates when it is low. The explanation for this pattern lies in the planner’s use of intertemporal distortions as a substitute for marginal labor income taxes. When the labor supply elasticity is low, labor income taxes are less distortionary, so the planner does not need to distort the intertemporal margin to provide incentives for the high skilled to exert effort. When the elasticity of labor supply is high, capital income taxes serve a more important role in encouraging work.

5.3. Intertemporal elasticity of substitution

The intertemporal elasticity of substitution equals \(\frac{1}{\gamma} \) in our model. The baseline assumption of \(\gamma = 1 \) is a standard benchmark in mainstream optimal tax and macroeconomic models. It is also the point estimate reported by Beaudry and van Wincoop (1996). But there is substantial uncertainty over the true value of this parameter. For example, Gourinchas and Parker (2002) report a point estimate for \(\gamma \) of 0.5 but also report estimates for different subpopulations that range from 0.3 to above 2.0. To accommodate this uncertainty, we explore the effects on our baseline results of three alternative values: \(\gamma = 0.5, \gamma = 2, \) and \(\gamma = 3 \). For each case, we compute the implied \(\alpha(w^*) \) following the same procedure described in Section 4.1. Fig. 6 shows optimal rates under these different assumptions on \(\gamma \).

Fig. 6 shows that varying the intertemporal elasticity of substitution has substantial effects on optimal capital income tax rates. For a low intertemporal elasticity (\(\gamma = 3 \)), optimal rates rise to 23.5%, while for a high intertemporal elasticity (\(\gamma = 0.5 \)) they rise to only 1.6%. The baseline case plateaus at 4.5%.

For the planner considering the use of optimal capital taxes, a low intertemporal elasticity of substitution means that individuals’ intertemporal allocations will change little in response to distortions. Moreover, the incentive effects of these distortions will be strong, as individuals are eager to avoid allocations that distort them away from their preferred allocations. These factors explain the high optimal capital income tax rates when \(\gamma = 3 \), and similar reasoning explains the low rates when \(\gamma = 0.5 \).

Though a low intertemporal elasticity can generate substantially higher optimal tax rates, the welfare gains of moving from no capital taxation to the optimum remain negligible regardless of \(\gamma \).

Further robustness checks in which we vary the elasticity of labor supply, the intertemporal elasticity of substitution, and the social welfare function together reinforce the lesson that optimal capital income tax rates are substantially larger than in the baseline case only when the intertemporal elasticity of substitution (\(\frac{1}{\gamma} \)) is small.
5.4. Comparing optimal to existing capital income taxes

We explore how sensitive our results are to the form of $\alpha(w)$. In particular, we compare our estimate of the empirical relationship between time preferences and ability to that which would be required to justify a given level of capital income taxes. This examines the robustness of our results to the strength of the relationship between preferences and ability.

We calculate the $\alpha(w)$ functions that yield population-weighted average optimal intertemporal wedges corresponding to a range of capital income tax rates. To do so, we continue to model (as in expression (27)) the function $\alpha(w)$ as a two-parameter power function

$$\alpha(w) = \psi(w)^\varepsilon,$$

(31)

where ψ and ε are scalars. We fix $\alpha(w)$ at its value for $w = \$28$ to ensure comparability of these preferences to our empirical estimates. Then, we use the wage (w) distribution and utility function (23) from Section 4 with $\gamma = 1$ and $\sigma = 3$, and we vary the values of ψ and ε in Eq. (31) while simulating the planner’s problem in Eqs. (7), (8), and (9).

Leading studies find that tax rates on capital income in developed economies today are over 40%.30 Fig. 7 plots the capital income tax rate, the discount rate31 we would need to rebate lump-sum to all individuals the utility function of individuals.

expenditure that has no effect on the economy and is not valued in equally; while in the second case, this government revenue is used for case, this government revenue is rebated lump-sum to all individuals expression (8), the planner’s feasibility constraint, is positive and two new cases in which the right-hand side of the inequality in enous government revenue requirement. In particular, we simulate

The NLSY data implies only a 12% gap between these two individuals. ability distribution than for an individual at the eightieth percentile. equal to 15% of total income in the simulated economy. In the

$$\alpha(w) = \psi(w)^\varepsilon,$$

(31)

where ψ and ε are scalars. We fix $\alpha(w)$ at its value for $w = \$28$ to ensure comparability of these preferences to our empirical estimates. Then, we use the wage (w) distribution and utility function (23) from Section 4 with $\gamma = 1$ and $\sigma = 3$, and we vary the values of ψ and ε in Eq. (31) while simulating the planner’s problem in Eqs. (7), (8), and (9).

Leading studies find that tax rates on capital income in developed economies today are over 40%.30 Fig. 7 plots the $\alpha(w)$ required for the population-weighted average optimal intertemporal wedge to imply capital income tax rates of 10%, 20%, and 40% as well as the values for $\alpha(w)$ from our baseline analysis of the NLSY data. To aid intuition, Fig. 8 plots the conventional annual discount factor $\beta(w)$ implied by these $\alpha(w)$.

As these figures make clear, the empirical relationship between time preferences and ability is far weaker than that which would justify the capital income tax rates prevailing in developed economies today, given our baseline calibration with $\gamma = 1$. For example, to justify a 20% capital income tax rate, the discount rate31 would need to be more than 200% larger for an individual at the twentieth percentile of the ability distribution than for an individual at the eightieth percentile. The NLSY data implies only a 12% gap between these two individuals.

5.5. Positive government revenue requirement

Finally, we check the robustness of our results to a positive, exogenous government revenue requirement. In particular, we simulate two new cases in which the right-hand side of the inequality in expression (8), the planner’s feasibility constraint, is positive and equal to 15% of total income in the simulated economy. In the first case, this government revenue is rebated lump-sum to all individuals equally; while in the second case, this government revenue is used for expenditure that has no effect on the economy and is not valued in the utility function of individuals.

Table 4 shows that the average capital income tax rate and the capital income tax rate at a high ability level (i.e., $w = 400$) in these two alternative scenarios. We also show the baseline case for reference. These results show that the positive revenue requirement has a negligible effect on our main findings. More generally, the optimal capital income tax schedules in these simulations are essentially indistinguishable from the baseline.

30 The Organization for Economic Cooperation and Development (OECD 2008) reports average combined corporate and personal statutory rates on distributed corporate profits of 42.4% in 2007, down from 50% in 2000. An alternative measure is the “tax ratio” of capital income tax revenue to total capital income. Carey and Rabesona (2004) calculate the tax ratio for capital income across sixteen OECD countries in 2000 to be 46.3.

31 That is, $\rho(w)$ where $\rho(w) = -\ln(\beta(w))$.

6. Conclusion

Among others, Mirrlees (1976) and Saez (2002) have argued that goods preferred by high-ability individuals ought to be taxed as part of an optimal tax policy that seeks to redistribute toward individuals with (unobservable) low ability. Recently, the logic for taxing goods preferred by those with high ability has been used to argue for positive capital income taxation, for example by Banks and Diamond (2008).

We study the case for nonlinear taxes on goods justified by a relationship between ability and preferences over them. We derive an analytical result characterizing the optimal distortion to consumption choices and decompose it into both conventional and novel factors. When we simulate optimal policy given these estimates, we find that the magnitude of optimal capital income taxes is modest—only 2% on average and 4.5% on high earner—for our baseline case with a unit intertemporal elasticity of substitution. The welfare gains from these taxes are small. These results are robust to variation in the social welfare function’s concavity, the elasticity of labor supply, and required government expenditure. Substantially larger optimal capital income tax rates are implied if the intertemporal elasticity of substitution is lower, though even in that case the welfare gain from imposing optimal capital income taxes remains small.

Fig. 7. Preferences $\alpha(w)$ required to justify average capital tax rates.

Fig. 8. Preferences $\beta(w)$ required to justify average capital tax rates.
Table 4

Results with a positive revenue requirement.

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Optimal average</th>
<th>Optimal capital income tax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>1.9961%</td>
<td>4.68%</td>
</tr>
<tr>
<td>Alternative 1</td>
<td>1.9971%</td>
<td>4.65%</td>
</tr>
<tr>
<td>Alternative 2</td>
<td>1.9973%</td>
<td>4.64%</td>
</tr>
</tbody>
</table>

Appendix A

The derivation of the general tax ratio, expression (17)

The Hamiltonian from the main text, Eq. (14), includes the following differential constraint:

\[
\frac{\partial H}{\partial w} = u_w(c_1, c_2, t, w) + \mu \left(\lambda \left(w^T(c_1) - p_2 c_2(c_1) \right) \right),
\]

where subscripts denote partial derivatives and \((\cdot) \) denotes the set of arguments of the utility function, \((c_1, c_2, t, w)\).

To solve for the optimal policy, choose \(t \) and \(c_1 \) as the control variables. The first order conditions yield

\[
\frac{dc_2}{dt} = - \left(\frac{\partial f}{\partial w} - \phi \left(\frac{u_w(c_1)}{w} \right) \right),
\]

and

\[
\frac{dc_1}{dt} = \lambda w^T(c_1) + \phi \left(\frac{u_w(c_1)}{w} \right).
\]

Individuals will allocate their after-tax income so that the following relationships hold:

\[
\frac{dc_2}{dw} = \frac{u_{c_2}}{w} = \frac{1 + t_2(c_1)}{p_2 \left(1 + t_2(c_1) \right)},
\]

\[
\frac{dc_1}{dw} = - \frac{u_{c_1}}{w} = \frac{w \left(1 - T(c_1) - p_2 \phi \left(\frac{u_w(c_1)}{w} \right) \right)}{p_2 \left(1 + t_2(c_1) \right)},
\]

so we can write:

\[
\frac{1 + t_2(c_1)}{p_2} = \frac{1}{1 + t_2(c_1)} \left(\frac{\partial f}{\partial w} - \phi \left(\frac{u_w(c_1)}{w} \right) \right).
\]

The expression (34) includes multipliers from the planner’s problem. Next, we derive expressions for them in terms of the model variables. This yields the optimal tax result (17). To do so, we write the Hamiltonian in terms of only the control and state variables. The individual’s budget constraint implicitly defines \(c_2 \) as a function of the variables \((l, w, c'_1)\) as well as taxes, which themselves depend on these three variables. Therefore we can write:

\[
\hat{c}_2 = \psi \left(c'_1, t, w \right).
\]

and

\[
\frac{\partial H}{\partial w} = \left(u_w(c_1, c'_1, t, w) - \frac{\lambda u_w(c_1, c'_1, t, w)}{w} \right).
\]

Next, we use expression (6), the individual’s utility function, from the main text:

\[
U(w) = u(c_1, c_2, t, w).
\]

to write the following implicit expression for \(\hat{c}_2 \):

\[
\hat{c}_2 = \psi \left(t, c'_1, t, w \right).
\]

With these substitutions, we write the Hamiltonian as

\[
H(w) = \left(\frac{\partial f}{\partial w} - \lambda \left(c_1 - p_2 \phi \left(\frac{u_w(c_1)}{w} \right) \right) \right)f(w) + \phi \left(\frac{u_w(c_1)}{w} \right).
\]

Pontryagin’s Maximum Principle implies

\[
\phi \left(w \right) = - \left[f(w) - \lambda p_2 \phi \left(\frac{u_w(c_1)}{w} \right) \right].
\]

The transversality conditions yield:

\[
\lambda = \frac{1}{\int_{w_{max}}^{w_{min}} \psi(u, \hat{c}_1, \hat{c}_2, f) f(w) dw}.
\]

Use

\[
\psi \left(\frac{\partial f}{\partial w} \right) = \frac{dc_2}{dw} = \frac{1}{u_{c_2}},
\]

to derive the expressions (21) and (22) from the main text.

Expression for optimal marginal income taxes

For income taxes, we are interested in the extra tax an individual pays when he earns a dollar of income. This will include commodity
taxes. We start by combining results from the previous section to obtain:

\[
d c_t^* = \left(1 - \alpha T \left(\frac{w_t^f}{w_t^f + \tau w_t^f} - p_t^w(w_t^f)\right)\right) / \left(1 + t_c^* (w_t^f, c_t^*)\right)
\]

\[
= \frac{\alpha f \left(w_t^f\right) + \phi \left(\frac{u_w^c(-c_t^*) - u_w^c(-c_t^*)}{w} - f \left(u_w^c(-c_t^*)\right)\right)}{\lambda p_{Cf} \left(w_t^f\right) - \phi \left(\frac{u_w^c(-c_t^*) - f \left(u_w^c(-c_t^*)\right)}{w}\right)}.
\]

Denote the labor wedge relative to good 2 as \(\tau_{t,c}\). Then, by using results (21) and (22), we can write:

\[
(1 - \tau_{t,c}) \left[f \left(w_t^f\right) - p_t \left(u_w^c(-c_t^*) - f \left(u_w^c(-c_t^*)\right)\right)\right] / \left[\frac{1}{A_2 \left(w_t^f\right)} + \frac{2 c_t^*}{\lambda p_{Cf} \left(w_t^f\right)}\right] = \gamma \frac{1}{C_{t,c}}.
\]

By using expressions (18), (19), and (20), this simplifies to:

\[
(1 - \tau_{t,c}) = \frac{-\left(u_w^c(-c_t^*) - f \left(u_w^c(-c_t^*)\right)\right) + C_{t,c}}{A_1 \left(w_t^f\right)} + \frac{c_t^*}{\lambda p_{Cf} \left(w_t^f\right)}.
\]

Note that if \(A_2 \left(w_t^f\right) > 0\), as we assumed throughout the analysis, \((1 - \tau_{t,c})\) is smaller than if \(A_2 \left(w_t^f\right) = 0\). Applying Eqs. (17) to (35) yields the parallel result for the labor wedge relative to good 1 \((1 - \tau_{t,c})\):

\[
(1 - \tau_{t,c}) = \frac{-\left(u_w^c(-c_t^*) - f \left(u_w^c(-c_t^*)\right)\right) + C_{t,c}}{A_1 \left(w_t^f\right)} + \frac{c_t^*}{\lambda p_{Cf} \left(w_t^f\right)}.
\]

Here, if \(A_1 \left(w_t^f\right) < 0\), the labor wedge is greater than if there is no relationship between preferences and ability.

Estimating time preference from NLSY data

Our measure of preferences will be the discount factor implied by using NLSY data on income and net worth in a simple model of individual optimization. Suppose individuals live for three periods. In the first two periods, roughly corresponding to ages 20 through 42 and 43 through 65, they work, consume, and borrow or save. In the third period, they are retired and live for 23 years (for simplicity, as this makes all three periods of similar length). The individual solves the following utility maximization problem:

\[
\max_{c_1, c_2, y_1, y_2} \left[\left(c_1^{1-\gamma} - 1\right) / \left(1 - \gamma\right) + \delta \left(c_2^{1-\gamma} - 1\right) / \left(1 - \gamma\right) + \delta^2 \left(c_1^{1-\gamma} - 1\right) / \left(1 - \gamma\right)\right] - \nu \left(y_1, y_2\right)\]

subject to

\[
\left(y_1 - c_1\right)^2 + \left(y_2 - c_2\right)^2 \geq c_3 = 0
\]

where \(c_i\) and \(y_i\) are consumption and income in period \(t\), \(\delta\) is the discount factor across 23-year periods (i.e., if the one-year-ahead discount factor is \(\beta\), then \(\delta = \beta^{23}\)), \(R = (1.05)^{23}\) is the average return to saving over a 23-year period, and \(\nu \left(y_1, y_2\right)\) is an unspecified function for the disutility of earning income.

We make the assumption that an individual’s total value of income prior to age 43 is identical to the income it will earn from age 43 until retirement. In the notation of the model, we assume \(y_1 = y_2\) for all individuals.\footnote{This simplifying assumption omits variation in the income profiles of individuals that may be informative for \(\delta\). To address this, we estimate the regression model in expression (23) including a measure of the slope of each individual’s income path up to age 43. Doing so yields a weaker estimated relationship between ability and discounting.} Solving the individual’s problem yields:

\[
\left(\delta^2 \left(R\right) \gamma \right)^2 + \left(\delta^2 \left(R\right) \gamma \right)^2 + \left(1 - \frac{y_1 R + y_2}{R c_1}\right) = 0.
\]

Assuming \(y_1 = y_2\),

\[
\delta = \left(1 - \frac{1}{2R^2} \left(\left(-3 + 4 \frac{y_1}{R} \frac{R}{R}\right) - 1\right)\right)^{\frac{1}{2}}.
\]

As expected, the higher is the income relative to consumption, the greater is the estimated \(\delta\) for an individual. We drop 37 individuals whose estimated \(\delta\) is negative or exceeds two in the \(\gamma = 1\) specification, leaving 7008 observations.

To estimate \(\delta\), we need values for \(y_1\) and \(c_1\) for each individual. For \(y_1\), we use the NLSY’s observations on income over time for each individual to calculate the “future value” of income earned prior to and including 2004. We do not observe income in all years for each individual. To obtain an income figure comparable to ending net worth for each individual, we calculate the future value of the observed incomes for each individual. Then, we scale that future value by the maximum number of years observable over the number of years observed for each individual. We also do not observe initial net worth. However, if we control for net worth in 1985, just six years after the survey began, the coefficient on AFQT is hardly changed.

Formally, \(y_1 = \sum_{t=1979}^{2004} \left(\frac{R \left(2004 - t\right)}{\left(2004 - t\right)}\right) y_t\). Using the full time series of income rather than simply the most recent observation of income is important for two reasons. First, it gives a better measure of the individual’s likely lifetime or permanent income. Second, to calculate \(c_1\), we assume that any income not accumulated as net worth by 2004 was consumed. Formally, we denote the NLSY variable “family net worth” \(NW\) and calculate \(c_1 = y_1 - NW\).

Our data do not include components of individuals’ expected future income, such as Social Security payments or other social transfers. To the extent that these omissions bias down the estimate of net worth, we will underestimate saving rates. Therefore, if these transfers are progressive, we will be overestimating the slope of discount factors versus ability. In a similar way, expected future gifts and inheritances are not taken into account in the data. To the extent that these are increasing in recipient income, we are underestimating the slope of discount factors versus ability.

Finally, a note on converting the estimates of \(\delta\) into the preferences in expression (23). The following equality relates the estimated \(\delta \left(w_t^f\right)\) of individual \(i\) between the two periods \(t\) and \(t + 1\) to its annualized level, \(\beta \left(w_t^f\right)\):

\[
\left(\delta \left(w_t^f\right)\right)^2 = \beta \left(w_t^f\right).
\]
Next, \(\beta'(w') \) is related to the model's representation of preferences, denoted \(\alpha'(w') \), by the following expression:

\[
\beta'(w') = (p_2)^{1-\gamma} \left(\frac{1}{\alpha'(w')} \right)^\gamma.
\]

Simplifying, note that the price ratio is the inverse of the annual return to saving, so \(p_2 = \frac{1}{\bar{w}} \) and:

\[
\beta'(w') = \left(\frac{1}{\bar{w}} \right)^{1-\gamma} \frac{1}{\alpha'(w')}^{\gamma};
\]

\[
\alpha'(w') = \left(\frac{1}{\bar{w}} \right)^{1-\gamma} \frac{1}{\beta'(w')}^{\gamma},
\]

(37)

We calculate \(\bar{R} \) as described in the footnote to expression (29), using the estimated \(\alpha'(w') \). Specifically, we calculate \(\bar{R} = 1 + r = 1 - \ln \left(\sum_i \beta(w') \pi_i \right) \), where \(\pi_i \) is the population proportion of type \(i \).

This reflects that the net rate of return \(r \) is set equal to the average discount rate \(\rho = -\ln \left(\sum_i \beta(w') \pi_i \right) \) in the data.

Utility function normalization, expressions (23) and (24)

Here, we detail the normalization of preferences in the expression (23). The goal is to scale the preferences across goods so that they do not mechanically affect labor effort. For an example of such an effect, consider the case of an individual solving an intertemporal optimization problem with utility

\[
U = \sum_{t=1}^T \left[\left(\frac{\sigma_t}{\bar{w}_t} \right)^{1-\gamma} \frac{1}{\left(\frac{1}{\sigma_t} \right)^{\gamma}} \right]^{\gamma}.
\]

and budget constraint

\[
\sum_{i=1}^T p_i (y_i - c_i) - p_T c_T = 0,
\]

with multiplier \(\lambda \). Substituting the individual's first order conditions into the budget constraint yields the following value for \(\lambda \):

\[
\lambda = \left(\frac{\sum_{t=1}^T \frac{p_t}{w_t} \left(\frac{\sigma_t}{\bar{w}_t} \right)^{1-\gamma}}{\sum_{t=1}^T p_t \left(\frac{\sigma_t}{\bar{w}_t} \right)^{1-\gamma}} \right)^{\gamma^{-1}}.
\]

This expression for \(\lambda \) implies:

\[
y_i^* = \left(\frac{w_i}{\bar{w}_i} \right)^{\gamma} \frac{\sum_{t=1}^T p_t \left(\frac{\sigma_t}{\bar{w}_t} \right)^{1-\gamma}}{\sum_{t=1}^T p_t \left(\frac{\sigma_t}{\bar{w}_t} \right)^{1-\gamma}}.
\]

In this case, the chosen income level \(y_i^* \) depends on preferences.

We wish to avoid that dependence, so we specify preferences in a way that will cause each individual's labor effort to be independent of time preferences. Consider a normalized version of the previous utility function:

\[
U = \sum_{t=1}^T \left(\frac{\alpha(w')^{T-t}}{\sum_{t=1}^T (\alpha'(w'))^{T-t-1}} \right)^\gamma \left(p_t \right)^{1-\gamma} \frac{1}{\sigma_t \left(\frac{y_i}{\bar{w}_i} \right)}^{\gamma}.
\]

This is a generalization of Eq. (23) to \(T \) rather than 2 time periods. Substituting the individual's first order conditions into the budget constraint yields the following value for \(\lambda \):

\[
\lambda = \left(\frac{1 + \sum_{t=1}^T \alpha(w')^{T-t}}{\sum_{t=1}^T (\alpha'(w'))^{T-t-1}} \right)^{\gamma^{-1}}.
\]

This expression for \(\lambda \) implies:

\[
y_i^* = \left(\frac{w_i}{\bar{w}_i} \right)^{\gamma} \frac{\sum_{t=1}^T p_t \left(\frac{\sigma_t}{\bar{w}_t} \right)^{1-\gamma}}{\sum_{t=1}^T (\alpha'(w'))^{T-t-1}}.
\]

To simplify, note that

\[
\sum_{t=1}^T (\alpha(w'))^{T-t} = 1 + \sum_{t=1}^T \alpha(w')^{T-t}
\]

so that the expression for \(y_i^* \) simplifies to:

\[
y_i^* = \left(\frac{w_i}{\bar{w}_i} \right)^{\gamma} \frac{\sum_{t=1}^T p_t \left(\frac{\sigma_t}{\bar{w}_t} \right)^{1-\gamma}}{\sum_{t=1}^T \left(\alpha'(w') \right)^{T-t}}.
\]

With this normalization, the choice of effort does not depend on preferences.

Note that if \(\gamma = 1 \), the normalized utility function becomes

\[
U = \sum_{t=1}^T \left(\frac{\alpha(w')^{T-t}}{\sum_{t=1}^T \left(\alpha'(w') \right)^{T-t-1}} \right) \ln \left(1 - \frac{1}{\sigma_t \left(\frac{y_i}{\bar{w}_i} \right)} \right).
\]

These normalized utility functions are used in the main paper.

References

