Risk Topography

MARKUS BRUNNERMEIER, GARY GORTON, AND ARVIND KRISHNAMURTHY

PRINCETON AND NBER, YALE AND NBER, NORTHWESTERN AND NBER
Objective

- Tools and data needed for assessing systemic risk
- Supervisory efforts currently underway
 - Fed stress tests (SCAP)
 - Proposed Office of Financial Research (OFR)
 - What data should be collected?
Defining Systemic Risk

- Systemic risk builds-up in a period of low volatility
- Materializes when negative shock hits susceptible financial sector balance sheets
- Spillovers
 - Direct contractual: domino effect (interconnectedness)
 - Indirect: price effect, credit crunch, liquidity hoarding, haircut/margin increases
 - System wide dislocations due to collection partial equilibrium responses
 - Unknown risk pockets/concentrations, crowded trades
 - Endogenous multiplier effects
 - Externalities, multiple equilibria, disequilibrium, ...

Brunnermeier, Gorton, Krishnamurthy
Defining Systemic Risk

- Systemic risk describes a possible adverse general equilibrium response of the financial system to a shock

- What data do we need to diagnose when the financial system is susceptible to adverse feedback loops?
1. Two challenges for systemic risk measurement
 - Existing data offers poor proxies for risk and liquidity.
 - Systemic risk is about a general-equilibrium feedback. Need a model-based interpretation of data.
 - Motivating examples.

2. Risk topography

3. Uses of data to manage systemic risk
 - Regulatory use
 - Private sector use in risk management

4. Comparisons
Example 1: Liquidity Risk

- Firm with $20 of equity and $80 of debt
- Some of the debt is overnight repo financing at one percent and the other half is 5-year debt at 4.5 percent.
- The firm buys one Agency mortgage-backed security for $50 (which is financed via repo at a 0% haircut)
- Loans $50 to a firm for one year at an interest rate of 5 percent.

- Liquidity risk: What if the firm cannot renew financing?
- Leverage is a crude measure...
Example 2: More Liquidity Risk

- Firm with $20 of equity and $80 of debt
- Some of the debt is overnight repo financing at one percent and the other half is 5-year debt at 4.5 percent.
- The firm buys one Private-label mortgage-backed security for $50 (which is financed via repo at a 0% haircut)
- Loans $50 to a firm for one year at an interest rate of 5 percent.

- The asset-side is less liquid
- More liquidity mismatch in this example
Example 3: Derivatives

- Firm with $20 of equity and $80 of debt
- The firm buys $100 of U.S. Treasuries
- Writes protection on a diversified portfolio of 100 investment-grade U.S. corporates, each with a notional amount of $10; so there is a total notional of $1,000. The weighted-average premium received on the CDS is 5 percent.

- Risk measurement problem: Derivatives...
- Liquidity measurement problem: Dynamic collateral calls are a liquidity drain.
Example 4: Rehypothecation

- Dealer starts with $10 of equity, invested in $10 of Treasuries
 - Initially no leverage
- Dealer lends $90 to a hedge fund against $90 of ABS collateral in an overnight repo
- Dealer posts $90 of ABS collateral to money market fund, to borrow $90 in an overnight repo

- Leverage = 9X
- But, little asset risk; little liquidity risk
- What if hedge fund loan was 10 days? Liquidity falls...
Example 5: Crowded Trade

- Two identical banks: $20 equity, $80 debt
- Half the debt is overnight repo.
- Each bank owns $50 of private-MBS, $50 of Treasuries
- Risk management: Bank can withstand losses if MBS prices fall by 5%, but if they fall by more, the bank will sell MBS/hedge exposure in ABX.

Issue: Risk management in general equilibrium
Two-step approach – the idea

Split into two subtasks

1. Partial equilibrium response to (orthogonal) stress factors
 a. In value (equity value, enterprise value)
 b. In liquidity index

 - Collect long-run panel data set!

 - ... reaction function

2. General equilibrium effects
 - Amplification, multiple equilibria

Financial Industry, Risk Managers

Regulators, Academics, Financial industry

Brunnermeier, Gorton, Krishnamurthy

Risk Topography
Example

- Date 0: measurement date
- Date 1: Possible crisis. State $\omega \in \Omega$
- Firm i
 - (A)ssets: Securities/loans, derivatives, repo loans, cash
 - (L)iabilities: short-term debt, long-term debt, equity
- Measure value and liquidity of each firm in each possible state
 - Why? Most theoretical analyses of feedback mechanisms map value (e.g., capital) and/or liquidity into decisions.
Two-Factor Example

• Focus on “risk factors” and “liquidity factors”
 o N possible date 1 real estate prices (risk factor)
 o M possible date 1 repo haircuts (liquidity factor)
 o States s = M X N matrix
• Elicit information on value and liquidity for orthogonal movements in each factor
• *Ideally, this measurement is as close to current risk management practice as possible*
• Plus select cross-factors
Value

- Value = A(s)
- Equity value = A(s) – L(s)
- Suppose real estate prices decline by 5%, 10%, 15%,...; suppose margins double, triple, ...

- Non-linear effects in choice of scenarios
Liquidity Mismatch Index (LMI)

<table>
<thead>
<tr>
<th>A</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market liquidity</td>
<td>Funding liquidity</td>
</tr>
<tr>
<td>• Can only sell assets at fire-sale prices</td>
<td>• Can’t roll over short term debt</td>
</tr>
<tr>
<td>Ease with which one can raise money by selling the asset</td>
<td>• Margin-funding is recalled</td>
</tr>
<tr>
<td></td>
<td>Ease with which one can raise money by borrowing using the asset as collateral</td>
</tr>
</tbody>
</table>

Liquidity Mismatch Index = liquidity of assets minus liquidity promised through liabilities

Brunnermeier, Gorton, Krishnamurthy

Risk Topography
Liquidity Mismatch Index (LMI)

<table>
<thead>
<tr>
<th>A</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asset “liquidity weight”: (\lambda)</td>
<td>Liability “liquidity weight”: (\lambda)</td>
</tr>
<tr>
<td>- Treasuries/cash: (\lambda = 1)</td>
<td>- Overnight debt: (\lambda = 1)</td>
</tr>
<tr>
<td>- Overnight repo: (\lambda = 1) (or close to one)</td>
<td>- Long-term Debt: (\lambda = 0.5)</td>
</tr>
<tr>
<td>- Agency MBS: (\lambda = 0.95)</td>
<td>- Equity: (\lambda = 0.20)</td>
</tr>
<tr>
<td>- Private-label MBS: (\lambda = 0.90)</td>
<td></td>
</tr>
</tbody>
</table>

\[LMI = \text{liquidity of assets} - \text{liquidity promised through liabilities} \]

Basel 3: Net Stable Funding Ratio, Liquidity Coverage Ratios implicitly assign some \(\lambda \) weights

Brunnermeier, Gorton, Krishnamurthy

Risk Topography
Modeling Response Function

- We want to know how a firm will respond to a shock that changes value and liquidity
 - Shed risk
 - Hoard liquidity
 - Raise financing

- Feedbacks when placed in general equilibrium
Data collected from firms

- Two pieces of information
 1. Capital and liquidity in each future stress scenario
 2. Measure of date 0 portfolio choice:
 - $\Delta(\text{value,liquidity})$ with respect to each factor
 - How much risk exposure is the firm taking?
 - How much liquidity exposure is the firm taking?
Calibrating Response Function

- Data presents a history of “date 0”s in varying conditions
 - Each date is a portfolio choice, Δ, as a function of current firm value/liquidity and current state of economy
 - Panel data

- Key feature of our approach: entire history is useful.
General equilibrium modeling

- In each state we know **direct** responses to 5%, 10%, 15%,... drop in factor in terms
 - Value, Liquidity index
- Predict response function
 - Try to “fire” sell assets, hoard liquidity, credit crunch
- Derive likely **indirect** equilibrium response to
 - this stress factor
 - other factors

Externalities, multiple equilibria, amplification, mutually inconsistent plans,...

- **Competition among systemic risk models**
Choice of stress scenarios

- **Issue 1**: Need core data to form panel data set on which to calibrate response functions
 - Orthogonal stress scenarios on baseline set of factors
 - Repeated observations
- **Issue 2**: Much of the interest at any time \(t \) is on special cases
 - Correlated scenarios (cross-scenarios)
 - Tailored scenarios (e.g., Greek default)

- Need both ...
Choice of stress scenarios

- **Orthogonal scenarios**
 - Market risk scenarios: Interest rate, credit spread, exchange rate, stock price, VIX, commodity prices, commercial and residential real estate
 - Liquidity risk scenarios: Haircut/margin spikes, can’t issue debt/sell assets,
 - Counterpart risk ...

- **Cross-scenarios**
 - Participants report on combination of factors that lead to worst outcome. Worst vector in ellipse.
 - Informs stress scenario in next round
Risk and Liquidity Pockets

- Risk measures aggregate across firms and sectors
 - What is sensitivity of a sector to a 10% fall in real estate prices?
 - Aggregate risk equals physical supply of risk

- Liquidity measures aggregate
 - Banking sector is net short liquidity
 - But, to whom, how much, etc.
 - Aggregated firm-level liquidity equals a “liquidity aggregate”

- Note: Measures designed to allow for some cross-checking, like Flow of Funds.
Data revelation – “financial stability report”

Transparency with delay

- Institutions react
 - Good..., but becomes more risk-taking
- **Data react** (form of Lucas critique)
 - Cross-checks are essential
- Idea:
 - Competition for best model among researchers in regulatory institutions, academia and financial industry
 - Improve models over time
 - e.g. call reports helped to understand commercial banks
Externality Regulation

- Externality regulation
- Described systemic risk-states are once subject to underinsurance
 - E.g. Caballero-Krishnamurthy
- How much is optimal insurance?
- How can we implement optimum?
Other issues

- Horizontal cross-check across institutions
 - Compare valuation models
- Complexity/simplicity
 - Standardization – more correlation
 - Hiding risks
- Snapshots versus average (quarter/year end spikes)
- Close cooperation with Fed
Different approaches to data collection

1. “Catch-all approach”
 - X terabytes in each second – insurmountable task(?)
 - IT firms (like Google/IBM) apply search/network algorithm
 - Complexity
 - Ownership of asset and hence investor reaction matters
 - deep pocket vs. leveraged investor

2. Our 2-Step approach – Risk Topography
 - Motivation:
 - Make use of 1000s of highly trained risk managers in financial industry
 - Risk managers are not trained to assess GE effects
 - Systemic risk is about GE effects
Data collection – existing data sets

• **Existing data sets**
 o Flow of funds – Copeland (1947, 1952)
 • Characterizes money flows within economy
 o Call reports – National Bank Act (1863), FDIC
 o SEC filings

• **Problems**
 o Not focused on systemic interactions (direct, price effects)
 o Old days: risky position was association w/ initial cash flow
 Nowadays: risky position is divorced from initial cash flow
 o Leverage is an outdated concept – risk sensitivities
Difference to repeated SCAP

Risk topography
- “Core stress factors” that don’t change over time
- Effect from tailored scenario
- **Aim:** Describe GE feedback effects important in systemic risk
 - Create panel data to estimate GE effects
- All financial institutions (including hedge funds, insurance companies, ...)

Repeated SCAP
- Single interlinked stress scenario
- Stress scenarios change over time
- **Aim:** Partial equilibrium stress analysis at each point in time
- Focus on main financial institutions
Summary

- Risk taking and initial cash flows are divorced
 - Flow of funds, Call Reports, outdated
- 2 step approach
 - Partial equilibrium response to risk factors (sensitivities – delta + nonlinear effects)
 - Build up panel data set to estimate response functions
 - General equilibrium modeling (competing models)