A Diachronic Counter-example to the Subset Principle: The Case of Anatolian Reduplication
Anthony D. Yates, UCLA (adyates@ucla.edu) & Sam Zukoff, Princeton (szukoff@princeton.edu)
AMP 2018 • University of California, San Diego • Oct 5-7, 2018

1. Introduction
- The “Subset Principle” (cf. Prince & Tesar 2004): learners choose the most restrictive grammar consistent with the positive evidence (≈ initial bias of MARKEDNESS ≫ IO-FAITHFULNESS).
 - Capturing the Subset Principle is key argument in favor of Biased Constraint Demotion (RCD; Prince & Tesar 2004) and Low Faithfulness Constraint Demotion (LFCD; Hayes 2004) over simple Recursive Constraint Demotion (RCD; Tesar & Smolensky 1998).
- The diachronic development of the Anatolian reduplicative system represents a case where speakers learned a superset grammar.
 - Our learning algorithm needs to accommodate (a specific kind of) non-Subset learning.
- Proposal: “Maximally Informative Recursive Constraint Demotion” (MIRCD)
 - A version of RCD (or BCD) which is biased towards winner-prefering constraints that can account for the greatest amount of data possible.
 - Non-Subset learning is permitted with MIRCD when there is a superset-subset relationship between the violation profiles of crucial constraints.

2. Anatolian Data
 - Base Shape Proto-Anatolian > Hittite
 - CVX- ≫ CV-CVX- ≫ CV-CVX- (1)
 - TRVX- ≫ TV-TRVX- ≫ TRV-TRVX-;
 - STVX- ≫ STV-STVX- ≫ STV-STVX-;
 - VRTX- does not exist yet (Yates & Zukoff in press)
 - Distribution analyzed with *PCR, a constraint against certain types of consonant repetitions:
 - No Poorly-Cued Repetitions (*PCR) [≈ *C,VCa / .C1[sonorant]] (Zukoff 2017)
 - For each sequence of repeated identical consonants separated by a vowel (CaVCa), assign a violation mark * if that sequence immediately precedes an obstruent.
- Contiguity-BR (McCarthy & Prince 1995) must rank low in PA to allow TRVX– C1-copying in pi-pri– (4.i), but high in Hittite to generate TRVX– cluster-copying in pri-pri– (4.ii).
- *PCR must rank high in PA but low in Hittite to allow VRTX– ar-ark– to emerge (6.ii).
- ALIGN-ROOT-L is ranked in the middle at both stages.
- ALIGN-ROOT-L: Assign one violation mark * for each segment intervening between the left edge of the root and the left edge of the word.

3. Anatolian Analysis & Diachrony
- CONTIGUITY-BR (McCarthy & Prince 1995) must rank low in PA to allow TRVX– C1-copying in pi-pri– (4.i), but high in Hittite to generate TRVX– cluster-copying in pri-pri– (4.ii).
- *PCR must rank high in PA but low in Hittite to allow VRTX– ar-ark– to emerge (6.ii).
- ALIGN-ROOT-L is ranked in the middle at both stages.
- ALIGN-ROOT-L: Assign one violation mark * for each segment intervening between the left edge of the root and the left edge of the word.

4. Anatolian Analysis & Diachrony (cont.)

5. MIRCD in Pre-Hittite [after change from TV-TRVX– to TRV-TRVX–]
- MIRCD installs CNTGm, because it has only W’s, and the most W’s.
 - RCD would install *PCR, but MIRCD does not because it does not have the most W’s.
 - Among remaining support (white rows), ALIGN is the only winner-prefferer, so it gets installed.
 - Again unlike RCD, MIRCD does not install PCR despite it preferring no losers.
 - All data is now explained, so *PCR (and MAXm) are ranked at the bottom of the grammar.
 - This is the ranking necessary to allow the later emergence of VR-VRTX–.
- Non-Subset learning is permitted w/ MIRCD here because of the superset-subset relationship between CNTGm and *PCR: *PCR explains a proper subset of the data which CNTGm explains.
- Under these specific conditions, MIRCD produces the non-Subset learning necessary to capture the Anatolian facts, without predicting non-Subset learning in the general case.

Proposal: Maximally Informative Recursive Constraint Demotion (MIRCD)
- RCD with a preliminary step which picks out and installs the constraints that favor the most winners first (Becker 2009), i.e., the most “informative” constraints.

Proposal: Maximally Informative Recursive Constraint Demotion (MIRCD)
- Total demotion of *PCR constitutes a diachronic counter-example to the Subset Principle.
 - Learners learned a grammar with a low-ranked markedness constraint despite not encountering evidence that it was violable.
- Question: What could have led learners to fail to obey the Subset Principle in this case?
 - Proposal: Maximally Informative Recursive Constraint Demotion (MIRCD)
 - RCD with a preliminary step which picks out and installs the constraints that favor the most winners first (Becker 2009), i.e., the most “informative” constraints.

Proposal: Maximally Informative Recursive Constraint Demotion (MIRCD)
- Total demotion of *PCR constitutes a diachronic counter-example to the Subset Principle.
 - Learners learned a grammar with a low-ranked markedness constraint despite not encountering evidence that it was violable.
- Question: What could have led learners to fail to obey the Subset Principle in this case?
 - Proposal: Maximally Informative Recursive Constraint Demotion (MIRCD)
 - RCD with a preliminary step which picks out and installs the constraints that favor the most winners first (Becker 2009), i.e., the most “informative” constraints.

Proposal: Maximally Informative Recursive Constraint Demotion (MIRCD)
- Total demotion of *PCR constitutes a diachronic counter-example to the Subset Principle.
 - Learners learned a grammar with a low-ranked markedness constraint despite not encountering evidence that it was violable.
- Question: What could have led learners to fail to obey the Subset Principle in this case?
 - Proposal: Maximally Informative Recursive Constraint Demotion (MIRCD)
 - RCD with a preliminary step which picks out and installs the constraints that favor the most winners first (Becker 2009), i.e., the most “informative” constraints.