Taking Incomplete Information Seriously: The Misunderstanding of John Harsanyi

Stephen Morris

University of Texas at Austin
November 2018
A Tripartite Distinction of Informational Assumptions in Economic Analysis

1. Perfect Information
A Tripartite Distinction of Informational Assumptions in Economic Analysis

1. Perfect Information
 - Everything is "common knowledge" among economic agents
A Tripartite Distinction of Informational Assumptions in Economic Analysis

1. Perfect Information
 - Everything is "common knowledge" among economic agents

2. Complete but Imperfect Information

3. Incomplete Information
 - No common knowledge assumptions at all
A Tripartite Distinction of Informational Assumptions in Economic Analysis

1. Perfect Information
 ▶ Everything is "common knowledge" among economic agents

2. Complete but Imperfect Information
 ▶ Even if there is not perfect information (e.g., there is uncertainty and maybe even asymmetric information), there is common knowledge about the structure of the environment
A Tripartite Distinction of Informational Assumptions in Economic Analysis

1. Perfect Information
 - Everything is "common knowledge" among economic agents

2. Complete but Imperfect Information
 - Even if there is not perfect information (e.g., there is uncertainty and maybe even asymmetric information), there is common knowledge about the structure of the environment

3. Incomplete Information
A Tripartite Distinction of Informational Assumptions in Economic Analysis

1. Perfect Information
 - Everything is "common knowledge" among economic agents

2. Complete but Imperfect Information
 - Even if there is not perfect information (e.g., there is uncertainty and maybe even asymmetric information), there is common knowledge about the structure of the environment

3. Incomplete Information
 - No common knowledge assumptions at all
The Tripartite Distinction in Game Theory
von Neumann and Morgenstern "Theory of Games and Economic Behavior" 1944

1. Perfect Information Games
The Tripartite Distinction in Game Theory

von Neumann and Morgenstern "Theory of Games and Economic Behavior" 1944

1. Perfect Information Games
 ▶ There is common knowledge of the structure of a game being played: players, the order in which they move, previous moves, payoffs, etc...
The Tripartite Distinction in Game Theory
von Neumann and Morgenstern "Theory of Games and Economic Behavior" 1944

1. Perfect Information Games
 - There is common knowledge of the structure of a game being played: players, the order in which they move, previous moves, payoffs, etc...
 - LEADING EXAMPLE: Chess
The Tripartite Distinction in Game Theory

von Neumann and Morgenstern "Theory of Games and Economic Behavior" 1944

1. Perfect Information Games
 - There is common knowledge of the structure of a game being played: players, the order in which they move, previous moves, payoffs, etc...
 - LEADING EXAMPLE: Chess

2. Complete but Imperfect Information

3. Incomplete Information
 - There is not common knowledge of the structure of the game being played
 - LEADING EXAMPLE: Almost all economic environments of interest
The Tripartite Distinction in Game Theory
von Neumann and Morgenstern "Theory of Games and Economic Behavior" 1944

1. Perfect Information Games
 - There is common knowledge of the structure of a game being played: players, the order in which they move, previous moves, payoffs, etc...
 - LEADING EXAMPLE: Chess

2. Complete but Imperfect Information
 - There is common knowledge of the structure of the game being played: players, rules of the game, feasible strategies, payoffs, etc.; but may not know past or current actions of other players or exogenous uncertainty
The Tripartite Distinction in Game Theory
von Neumann and Morgenstern "Theory of Games and Economic Behavior" 1944

1. Perfect Information Games
 - There is common knowledge of the structure of a game being played: players, the order in which they move, previous moves, payoffs, etc...
 - LEADING EXAMPLE: Chess

2. Complete but Imperfect Information
 - There is common knowledge of the structure of the game being played: players, rules of the game, feasible strategies, payoffs, etc....; but may not know past or current actions of other players or exogenous uncertainty
 - LEADING EXAMPLE: Poker
The Tripartite Distinction in Game Theory
von Neumann and Morgenstern "Theory of Games and Economic Behavior" 1944

1. Perfect Information Games
 - There is common knowledge of the structure of a game being played: players, the order in which they move, previous moves, payoffs, etc...
 - LEADING EXAMPLE: Chess

2. Complete but Imperfect Information
 - There is common knowledge of the structure of the game being played: players, rules of the game, feasible strategies, payoffs, etc...; but may not know past or current actions of other players or exogenous uncertainty
 - LEADING EXAMPLE: Poker

3. Incomplete Information
The Tripartite Distinction in Game Theory
von Neumann and Morgenstern "Theory of Games and Economic Behavior" 1944

1. Perfect Information Games
 - There is common knowledge of the structure of a game being played: players, the order in which they move, previous moves, payoffs, etc...
 - LEADING EXAMPLE: Chess

2. Complete but Imperfect Information
 - There is common knowledge of the structure of the game being played: players, rules of the game, feasible strategies, payoffs, etc...; but may not know past or current actions of other players or exogenous uncertainty
 - LEADING EXAMPLE: Poker

3. Incomplete Information
 - There is not common knowledge of the structure of the game being played
The Tripartite Distinction in Game Theory
von Neumann and Morgenstern "Theory of Games and Economic Behavior" 1944

1. Perfect Information Games
 - There is common knowledge of the structure of a game being played: players, the order in which they move, previous moves, payoffs, etc...
 - LEADING EXAMPLE: Chess

2. Complete but Imperfect Information
 - There is common knowledge of the structure of the game being played: players, rules of the game, feasible strategies, payoffs, etc....; but may not know past or current actions of other players or exogenous uncertainty
 - LEADING EXAMPLE: Poker

3. Incomplete Information
 - There is not common knowledge of the structure of the game being played
 - LEADING EXAMPLE: Almost all economic environments of interest?
A Pessimistic Assessment

von Neumann and Morgenstern "Theory of Games and Economic Behavior" 1944

...we cannot avoid the assumption that all subjects under consideration are completely informed about the physical characteristics of the situation in which they operate

Aumann (1987) wrote "The common knowledge assumption underlies all of game theory and much of economic theory. Whatever be the model under discussion ... the model itself must be assumed common knowledge; otherwise the model is insufficiently specified, and the analysis incoherent."
incomplete Information is not a problem
incomplete Information is not a problem
we can incorporate any incomplete information without loss of
generality!
there is a set of states Θ that we care about
John Harsanyi Part 1: Type Spaces

- there is a set of states Θ that we care about
- two players, Ann and Bob (generalize straightforwardly to many players)
John Harsanyi Part 1: Type Spaces

- there is a set of states Θ that we care about
- two players, Ann and Bob (generalize straightforwardly to many players)
- each player has a space of possible "types": T_A, T_B
John Harsanyi Part 1: Type Spaces

- there is a set of states Θ that we care about
- two players, Ann and Bob (generalize straightforwardly to many players)
- each player has a space of possible "types": T_A, T_B
 - types are "like" your hand in poker
John Harsanyi Part 1: Type Spaces

- there is a set of states Θ that we care about
- two players, Ann and Bob (generalize straightforwardly to many players)
- each player has a space of possible "types": T_A, T_B
 - types are "like" your hand in poker
- write $\pi_A(t_B, \theta|t_A)$ for the probability that type t_A of Ann assigns to both Bob being type t_B and the state being θ; so we have
 \[\pi_A : T_A \rightarrow \Delta(T_B \times \Theta) \]
 and analogously
 \[\pi_B : T_B \rightarrow \Delta(T_A \times \Theta) \]
John Harsanyi Part 1: Type Spaces

- there is a set of states \(\Theta \) that we care about
- two players, Ann and Bob (generalize straightforwardly to many players)
- each player has a space of possible "types": \(T_A, T_B \)
 - types are "like" your hand in poker
- write \(\pi_A (t_B, \theta|t_A) \) for the probability that type \(t_A \) of Ann assigns to both Bob being type \(t_B \) and the state being \(\theta \); so we have
 \[
 \pi_A : T_A \rightarrow \Delta (T_B \times \Theta)
 \]
 and analogously
 \[
 \pi_B : T_B \rightarrow \Delta (T_A \times \Theta)
 \]
- The state space \(\Theta \) can embed a lot of stuff...
John Harsanyi Part 1: Type Spaces

- there is a set of states Θ that we care about
- two players, Ann and Bob (generalize straightforwardly to many players)
- each player has a space of possible "types": T_A, T_B
 - types are "like" your hand in poker
- write $\pi_A (t_B, \theta|t_A)$ for the probability that type t_A of Ann assigns to both Bob being type t_B and the state being θ; so we have
 \[\pi_A : T_A \rightarrow \Delta (T_B \times \Theta) \]
 and analogously
 \[\pi_B : T_B \rightarrow \Delta (T_A \times \Theta) \]
- The state space Θ can embed a lot of stuff...
 - in game theory, it can encompass payoffs but also the rules of the game....
there is a set of states Θ that we care about

- two players, Ann and Bob (generalize straightforwardly to many players)
- each player has a space of possible "types": T_A, T_B
 - types are "like" your hand in poker
- write $\pi_A(t_B, \theta|t_A)$ for the probability that type t_A of Ann assigns to both Bob being type t_B and the state being θ; so we have
 \[
 \pi_A : T_A \rightarrow \Delta (T_B \times \Theta)
 \]
 and analogously
 \[
 \pi_B : T_B \rightarrow \Delta (T_A \times \Theta)
 \]
- The state space Θ can embed a lot of stuff...
 - in game theory, it can encompass payoffs but also the rules of the game....
 - in economic model, it can encompass preferences, technology, etc...
Ann is characterized by...

So Ann is characterized by this infinite sequence of such higher order beliefs, or universal types

"universal type space" satisfies

We can assume that this structure is common knowledge

Incomplete information is not a problem after all!
John Harsanyi Part 2: Universal Type Spaces

- Ann is characterized by...
 1. her belief about the state
Ann is characterized by...

1. her belief about the state
2. her belief about the state and the Bob’s belief about the state

So Ann is characterized by this infinite sequence of such higher order beliefs, or universal types.

"universal type space" T satisfies $T \Delta \Theta$.

We can assume that this structure is common knowledge.

Incomplete information is not a problem after all!
Ann is characterized by...

1. her belief about the state
2. her belief about the state and the Bob’s belief about the state
3. her belief about the state and [Bob’s belief about the state and Ann’s belief about the state]

So Ann is characterized by this inﬁnite sequence of such higher order beliefs, or universal types. "universal type space" T satisﬁes $\Delta(T(\Theta))$. We can assume that this structure is common knowledge. Incomplete information is not a problem after all!
Ann is characterized by...

1. her belief about the state
2. her belief about the state and the Bob’s belief about the state
3. her belief about the state and [Bob’s belief about the state and Ann’s belief about the state]
4. and so on....
Ann is characterized by...

1. her belief about the state
2. her belief about the state and the Bob’s belief about the state
3. her belief about the state and [Bob’s belief about the state and Ann’s belief about the state]
4. and so on....

So Ann is characterized by this infinite sequence of such higher order beliefs, or universal types.
Ann is characterized by...

1. her belief about the state
2. her belief about the state and the Bob’s belief about the state
3. her belief about the state and [Bob’s belief about the state and Ann’s belief about the state]
4. and so on....

So Ann is characterized by this infinite sequence of such higher order beliefs, or universal types

"universal type space" T^* satisfies $T^* \approx \Delta (T^* \times \Theta)$
Ann is characterized by...

1. her belief about the state
2. her belief about the state and the Bob’s belief about the state
3. her belief about the state and [Bob’s belief about the state and Ann’s belief about the state]
4. and so on....

So Ann is characterized by this infinite sequence of such higher order beliefs, or universal types

"universal type space" T^* satisfies $T^* \approx \Delta (T^* \times \Theta)$

We can assume that this structure is common knowledge
Ann is characterized by...

1. her belief about the state
2. her belief about the state and the Bob’s belief about the state
3. her belief about the state and [Bob’s belief about the state and Ann’s belief about the state]
4. and so on....

So Ann is characterized by this infinite sequence of such higher order beliefs, or universal types

"universal type space" T^* satisfies $T^* \approx \Delta (T^* \times \Theta)$

We can assume that this structure is common knowledge

Incomplete information is not a problem after all!
The Misunderstanding of John Harsanyi

- the good news:
The Misunderstanding of John Harsanyi

- the good news:
 - by working with the universal type space, we can dispense with common knowledge assumptions
The Misunderstanding of John Harsanyi

- the good news:
 - by working with the universal type space, we can dispense with common knowledge assumptions

- the bad news:
The Misunderstanding of John Harsanyi

- the good news:
 - by working with the universal type space, we can dispense with common knowledge assumptions

- the bad news:
 - the economics profession went straight back to make unrealistic complete information assumptions, by working with "small" and otherwise simple type spaces (e.g., independent types = common knowledge of first order beliefs)
The Misunderstanding of John Harsanyi

- the good news:
 - by working with the universal type space, we can dispense with common knowledge assumptions

- the bad news:
 - the economics profession went straight back to make unrealistic complete information assumptions, by working with "small" and otherwise simple type spaces (e.g., independent types = common knowledge of first order beliefs)
 - a little "bait and switch"?
The Misunderstanding of John Harsanyi

- the good news:
 - by working with the universal type space, we can dispense with common knowledge assumptions

- the bad news:
 - the economics profession went straight back to make unrealistic complete information assumptions, by working with "small" and otherwise simple type spaces (e.g., independent types = common knowledge of first order beliefs)
 - a little "bait and switch"?

- an interesting research agenda?
The Misunderstanding of John Harsanyi

- the good news:
 - by working with the universal type space, we can dispense with common knowledge assumptions

- the bad news:
 - the economics profession went straight back to make unrealistic complete information assumptions, by working with "small" and otherwise simple type spaces (e.g., independent types = common knowledge of first order beliefs)
 - a little "bait and switch"?

- an interesting research agenda?
 - how incomplete information can be re-visited recognizing that implicit common knowledge assumptions are a real issue
The Misunderstanding of John Harsanyi

- the good news:
 - by working with the universal type space, we can dispense with common knowledge assumptions

- the bad news:
 - the economics profession went straight back to make unrealistic complete information assumptions, by working with "small" and otherwise simple type spaces (e.g., independent types = common knowledge of first order beliefs)
 - a little "bait and switch"?

- an interesting research agenda?
 - how incomplete information can be re-visited recognizing that implicit common knowledge assumptions are a real issue
 - make those implicit common knowledge assumptions explicit and relax them
The Misunderstanding of John Harsanyi

- the good news:
 - by working with the universal type space, we can dispense with common knowledge assumptions

- the bad news:
 - the economics profession went straight back to make unrealistic complete information assumptions, by working with "small" and otherwise simple type spaces (e.g., independent types = common knowledge of first order beliefs)
 - a little "bait and switch"?

- an interesting research agenda?
 - how incomplete information can be re-visited recognizing that implicit common knowledge assumptions are a real issue
 - make those *implicit* common knowledge assumptions *explicit* and relax them
 - taking higher-order beliefs seriously

Game theory....is deficient to the extent that it assumes other features to be common knowledge, such as one agent’s probability assessment about another’s preferences or information.

I foresee the progress of game theory as depending on successive reductions in the base of common knowledge required to conduct useful analyses of practical problems. Only by repeated weakening of common knowledge assumptions will the theory approximate reality."
The Misunderstanding of John Harsanyi

- this lecture: review some baby steps in this agenda
The Misunderstanding of John Harsanyi

- this lecture: review some baby steps in this agenda
 1. modelling coordination ("global games")
The Misunderstanding of John Harsanyi

- this lecture: review some baby steps in this agenda
 1. modelling coordination ("global games")
 2. informationally robust analysis of games (maybe)
The Misunderstanding of John Harsanyi

this lecture: review some baby steps in this agenda

1. modelling coordination ("global games")
2. informationally robust analysis of games (maybe)
3. informationally robust mechanism design (probably not)
The Misunderstanding of John Harsanyi

this lecture: review some baby steps in this agenda

1. modelling coordination ("global games")
2. informationally robust analysis of games (maybe)
3. informationally robust mechanism design (probably not)

key but subtle observation: relaxing common knowledge is equivalent to allowing richer type spaces
Application 1: Strategic Complementarities

- Many economic problems have "strategic complementarities" and thus, when modelled as a perfect information game, multiple equilibria
Application 1: Strategic Complementarities

- Many economic problems have "strategic complementarities" and thus, when modelled as a perfect information game, multiple equilibria
- E.g., currency crises, bank runs, financial crises, demand externalities.....
Many economic problems have "strategic complementarities" and thus, when modelled as a perfect information game, multiple equilibria.

E.g., currency crises, bank runs, financial crises, demand externalities.....

Strategic complementarities are important but what are the implications of multiple equilibria for empirical work, policy analysis or comparative statics more generally?
Application 1: Strategic Complementarities

- Many economic problems have "strategic complementarities" and thus, when modelled as a perfect information game, multiple equilibria
- E.g., currency crises, bank runs, financial crises, demand externalities…..
- Strategic complementarities are important but what are the implications of multiple equilibria for empirical work, policy analysis or comparative statics more generally?
- CLAIM: It is important for lots of applied economic analysis to think about the implications of relaxing common knowledge assumptions in coordination games
Today’s Talk:

- Simplest Example of a Coordination Game...
Today’s Talk:

- Simplest Example of a Coordination Game...
- Ann chooses row, Bob chooses column

<table>
<thead>
<tr>
<th></th>
<th>Invest</th>
<th>Not Invest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invest</td>
<td>(\theta_A, \theta_B)</td>
<td>(\theta_A - 1, 0)</td>
</tr>
<tr>
<td>Not Invest</td>
<td>0, (\theta_B - 1)</td>
<td>0</td>
</tr>
</tbody>
</table>

If \(0 < \theta_A < 1 \) and \(0 < \theta_B < 1 \), then this game has multiple Nash equilibria.
Today’s Talk:

- Simplest Example of a Coordination Game...
- Ann chooses row, Bob chooses column

<table>
<thead>
<tr>
<th></th>
<th>Invest</th>
<th>Not Invest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invest</td>
<td>(\theta_A, \theta_B)</td>
<td>(\theta_A - 1, 0)</td>
</tr>
<tr>
<td>Not Invest</td>
<td>(0, \theta_B - 1)</td>
<td>0</td>
</tr>
</tbody>
</table>

- If \(0 < \theta_A < 1\) and \(0 < \theta_B < 1\), then this game has multiple Nash equilibria
Global Games

<table>
<thead>
<tr>
<th></th>
<th>Invest</th>
<th>Not Invest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invest</td>
<td>θ_A, θ_B</td>
<td>$\theta_A - 1, 0$</td>
</tr>
<tr>
<td>Not Invest</td>
<td>$0, \theta_B - 1$</td>
<td>0</td>
</tr>
</tbody>
</table>

- Suppose that state ω is uniformly distributed on an interval containing $[0, 1]$
Global Games

<table>
<thead>
<tr>
<th></th>
<th>Invest</th>
<th>Not Invest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invest</td>
<td>θ_A, θ_B</td>
<td>$\theta_A - 1, 0$</td>
</tr>
<tr>
<td>Not Invest</td>
<td>$0, \theta_B - 1$</td>
<td>0</td>
</tr>
</tbody>
</table>

- Suppose that state ω is uniformly distributed on an interval containing $[0, 1]$
- $\theta_I = \omega + \epsilon_I$, where the ϵ_I are i.i.d. noise distributed on a small interval
Global Games

<table>
<thead>
<tr>
<th></th>
<th>Invest</th>
<th>Not Invest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invest</td>
<td>θ_A, θ_B</td>
<td>$\theta_A - 1, 0$</td>
</tr>
<tr>
<td>Not Invest</td>
<td>$0, \theta_B - 1$</td>
<td>0</td>
</tr>
</tbody>
</table>

- Suppose that state ω is uniformly distributed on an interval containing $[0, 1]$
- $\theta_I = \omega + \varepsilon_I$, where the ε_I are i.i.d. noise distributed on a small interval
- Ann knows θ_A but forms conjecture about θ_B by Bayes updating...
Global Games

<table>
<thead>
<tr>
<th></th>
<th>Invest</th>
<th>Not Invest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invest</td>
<td>θ_A, θ_B</td>
<td>$\theta_A - 1, 0$</td>
</tr>
<tr>
<td>Not Invest</td>
<td>$0, \theta_B - 1$</td>
<td>0</td>
</tr>
</tbody>
</table>

- Suppose that state ω is uniformly distributed on an interval containing $[0, 1]$
- $\theta_I = \omega + \epsilon_I$, where the ϵ_I are i.i.d. noise distributed on a small interval
- Ann knows θ_A but forms conjecture about θ_B by Bayes updating...
- Bob knows θ_B but forms conjecture about θ_A by Bayes updating...
Global Games

<table>
<thead>
<tr>
<th></th>
<th>Invest</th>
<th>Not Invest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invest</td>
<td>θ_A, θ_B</td>
<td>$\theta_A - 1, 0$</td>
</tr>
<tr>
<td>Not Invest</td>
<td>$0, \theta_B - 1$</td>
<td>0</td>
</tr>
</tbody>
</table>

- Suppose that state ω is uniformly distributed on an interval containing $[0, 1]$
- $\theta_i = \omega + \varepsilon_i$, where the ε_i are i.i.d. noise distributed on a small interval
- Ann knows θ_A but forms conjecture about θ_B by Bayes updating...
- Bob knows θ_B but forms conjecture about θ_A by Bayes updating...
- Minor variant of Carlsson and van Damme (1993)
Suppose Ann and Bob follow strategies of the form: invest if $\theta_1 \geq \theta^*$.
Risk Dominance

- Suppose Ann and Bob follow strategies of the form: invest if $\theta_I \geq \theta^*$
- Suppose $\theta_A = \theta^*$
Risk Dominance

- Suppose Ann and Bob follow strategies of the form: invest if $\theta_I \geq \theta^*$
- Suppose $\theta_A = \theta^*$
- Ann attaches probability $\frac{1}{2}$ to $\theta_B \geq \theta^*$

For this to be an equilibrium, we must have $\theta = \frac{1}{2}$.
Suppose Ann and Bob follow strategies of the form: invest if $\theta_I \geq \theta^*$
Suppose $\theta_A = \theta^*$
Ann attaches probability $\frac{1}{2}$ to $\theta_B \geq \theta^*$
For this to be an equilibrium, we must have $\theta^* = \frac{1}{2}$
Suppose Ann and Bob follow strategies of the form: invest if $\theta_1 \geq \theta^*$

Suppose $\theta_A = \theta^*$

Ann attaches probability $\frac{1}{2}$ to $\theta_B \geq \theta^*$

For this to be an equilibrium, we must have $\theta^* = \frac{1}{2}$

The "risk dominant" action is always played in this equilibrium
Risk Dominance

- Suppose Ann and Bob follow strategies of the form: invest if $\theta_I \geq \theta^*$
- Suppose $\theta_A = \theta^*$
- Ann attaches probability $\frac{1}{2}$ to $\theta_B \geq \theta^*$
- For this to be an equilibrium, we must have $\theta^* = \frac{1}{2}$
- The "risk dominant" action is always played in this equilibrium
 - for small noise, the risk dominant Nash equilibrium of the perfect information game is almost always played
Unique Rationalizable Play

- In fact, the unique "rationalizable" in this game is to invest if and only if $\theta_i \geq \frac{1}{2}$
In fact, the unique "rationalizable" in this game is to invest if and only if $\theta_i \geq \frac{1}{2}$

PROOF:
In fact, the unique "rationalizable" in this game is to invest if and only if $\theta_I \geq \frac{1}{2}$

PROOF:

- Let $\bar{\theta}$ be the largest value of θ_I at which it is rationalizable for either player to not invest.
In fact, the unique "rationalizable" in this game is to invest if and only if $\theta_I \geq \frac{1}{2}$.

PROOF:

- Let θ be the largest value of θ_I at which it is rationalizable for either player to not invest.
- Suppose $\theta > \frac{1}{2}$.
Unique Rationalizable Play

In fact, the unique "rationalizable" in this game is to invest if and only if $\theta_I \geq \frac{1}{2}$.

PROOF:

- Let $\bar{\theta}$ be the largest value of θ_I at which it is rationalizable for either player to not invest.
- Suppose $\bar{\theta} > \frac{1}{2}$.
- In particular, suppose that not invest is rationalizable for Ann when $\theta_A = \bar{\theta}$ and invest is uniquely rationalizable for Bob whenever $\theta_B > \bar{\theta}$.

In fact, the unique "rationalizable" in this game is to invest if and only if $\theta_I \geq \frac{1}{2}$.

PROOF:

- Let $\bar{\theta}$ be the largest value of θ_I at which it is rationalizable for either player to not invest.
- Suppose $\bar{\theta} > \frac{1}{2}$.
- In particular, suppose that not invest is rationalizable for Ann when $\theta_A = \bar{\theta}$ and invest is uniquely rationalizable for Bob whenever $\theta_B > \bar{\theta}$.
- When $\theta_A = \bar{\theta}$, she assigns probability $\frac{1}{2}$ to $\theta_B > \bar{\theta}$.
In fact, the unique "rationalizable" in this game is to invest if and only if $\theta_I \geq \frac{1}{2}$.

PROOF:

- Let $\bar{\theta}$ be the largest value of θ_I at which it is rationalizable for either player to not invest.
- Suppose $\bar{\theta} > \frac{1}{2}$.
- In particular, suppose that not invest is rationalizable for Ann when $\theta_A = \bar{\theta}$ and invest is uniquely rationalizable for Bob whenever $\theta_B > \bar{\theta}$.
- When $\theta_A = \bar{\theta}$, she assigns probability $\frac{1}{2}$ to $\theta_B > \bar{\theta}$.
- Her expected payoff to investing is at least $\bar{\theta} - \frac{1}{2} > 0$.
Unique Rationalizable Play

- In fact, the unique "rationalizable" in this game is to invest if and only if $\theta_I \geq \frac{1}{2}$

- PROOF:
 - Let $\bar{\theta}$ be the largest value of θ_I at which it is rationalizable for either player to not invest
 - Suppose $\bar{\theta} > \frac{1}{2}$
 - In particular, suppose that not invest is rationalizable for Ann when $\theta_A = \bar{\theta}$ and invest is uniquely rationalizable for Bob whenever $\theta_B > \bar{\theta}$
 - When $\theta_A = \bar{\theta}$, she assigns probability $\frac{1}{2}$ to $\theta_B > \bar{\theta}$
 - Her expected payoff to investing is at least $\bar{\theta} - \frac{1}{2} > 0$
 -a contradiction
Suppose that state ω is distributed according to smooth density $g(\cdot)$.

<table>
<thead>
<tr>
<th></th>
<th>Invest</th>
<th>Not Invest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invest</td>
<td>θ_A, θ_B</td>
<td>$\theta_A - 1, 0$</td>
</tr>
<tr>
<td>Not Invest</td>
<td>$0, \theta_B - 1$</td>
<td>0</td>
</tr>
</tbody>
</table>
Global Games

<table>
<thead>
<tr>
<th></th>
<th>Invest</th>
<th>Not Invest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invest</td>
<td>θ_A, θ_B</td>
<td>$\theta_A - 1, 0$</td>
</tr>
<tr>
<td>Not Invest</td>
<td>$0, \theta_B - 1$</td>
<td>0</td>
</tr>
</tbody>
</table>

- Suppose that state ω is distributed according to smooth density $g(\cdot)$
- $\theta_I = \omega + \sigma \epsilon_I$, and ϵ_I are i.i.d. noise, where $\sigma > 0$ is small and $f(\cdot)$ is a smooth density
Global Games

<table>
<thead>
<tr>
<th></th>
<th>Invest</th>
<th>Not Invest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invest</td>
<td>θ_A, θ_B</td>
<td>$\theta_A - 1, 0$</td>
</tr>
<tr>
<td>Not Invest</td>
<td>$0, \theta_B - 1$</td>
<td>0</td>
</tr>
</tbody>
</table>

- Suppose that state ω is distributed according to smooth density $g(\cdot)$
- $\theta_I = \omega + \sigma \cdot \varepsilon_I$, and ε_I are i.i.d. noise, where $\sigma > 0$ is small and $f(\cdot)$ is a smooth density.
- If $\sigma \approx 0$, then Ann always attaches probability $\approx \frac{1}{2}$ to $\theta_B \leq \theta_A$.
Global Games

<table>
<thead>
<tr>
<th></th>
<th>Invest</th>
<th>Not Invest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invest</td>
<td>θ_A, θ_B</td>
<td>$\theta_A - 1, 0$</td>
</tr>
<tr>
<td>Not Invest</td>
<td>$0, \theta_B - 1$</td>
<td>0</td>
</tr>
</tbody>
</table>

- Suppose that state ω is distributed according to smooth density $g(\cdot)$
- $\theta_I = \omega + \sigma \cdot \varepsilon_I$, and ε_I are i.i.d. noise, where $\sigma > 0$ is small and $f(\cdot)$ is a smooth density
- If $\sigma \approx 0$, then Ann always attaches probability $\approx \frac{1}{2}$ to $\theta_B \leq \theta_A$
- As $\sigma \to 0$, unique rationalizable outcome has each player invest if and only if $\theta_I \geq \frac{1}{2}$
Global Games Extensions

- INTERPRETATION: Relaxing strong and unjustified assumption of common knowledge of payoffs generates intuitive prediction
Global Games Extensions

- **INTERPRETATION:** Relaxing strong and unjustified assumption of common knowledge of payoffs generates intuitive prediction
- Analysis extends to many player binary action symmetric payoffs very cleanly:
Global Games Extensions

- INTERPRETATION: Relaxing strong and unjustified assumption of common knowledge of payoffs generates intuitive prediction

- Analysis extends to many player binary action symmetric payoffs very cleanly:
 - Selected "risk dominant" action becomes best response to uniform distribution over proportion of others investing
Global Games Extensions

- **INTERPRETATION**: Relaxing strong and unjustified assumption of common knowledge of payoffs generates intuitive prediction.
- Analysis extends to many player binary action symmetric payoffs very cleanly:
 - Selected "risk dominant" action becomes best response to uniform distribution over proportion of others investing.
 - Can do lots of interesting comparative statics / policy analysis (and people have done....)

Further extends to general supermodular games.
Global Games Extensions

- **INTERPRETATION**: Relaxing strong and unjustified assumption of common knowledge of payoffs generates intuitive prediction
- **Analysis extends to many player binary action symmetric payoffs very cleanly:**
 - Selected "risk dominant" action becomes best response to uniform distribution over proportion of others investing
 - Can do lots of interesting comparative statics / policy analysis (and people have done....)
- **Further extends to general supermodular games**
BUT isn’t this a rather ad hoc way of relaxing common knowledge assumptions?
Global Games Critique

- BUT isn’t this a rather ad hoc way of relaxing common knowledge assumptions?
- In particular, we now have the unreasonable implicit and important common knowledge assumption about the distribution of signals conditional on the state....
BUT isn’t this a rather ad hoc way of relaxing common knowledge assumptions?

In particular, we now have the unreasonable implicit and important common knowledge assumption about the distribution of signals conditional on the state....

Let’s go back to basics and examine our coordination game without making common knowledge assumptions.... or at least making fewer common knowledge assumptions....
An Important Restriction on Type Space: Private Values

- suppose that Ann’s preferences are summarized by a parameter $\theta_A \in \Theta_A$ (known to Ann), and similarly for Bob ("private values")
An Important Restriction on Type Space: Private Values

- suppose that Ann’s preferences are summarized by a parameter $\theta_A \in \Theta_A$ (known to Ann), and similarly for Bob ("private values")
- natural to consider slightly different type spaces:
An Important Restriction on Type Space: Private Values

- suppose that Ann’s preferences are summarized by a parameter $\theta_A \in \Theta_A$ (known to Ann), and similarly for Bob ("private values")
- natural to consider slightly different type spaces:
 - Ann has a set of types T_A, where a type is characterized by a payoff parameter $\hat{\theta}_A (t_A) \in \Theta_A$ and a belief $\hat{\pi}_A (t_A) \in \Delta (T_B)$
An Important Restriction on Type Space: Private Values

- suppose that Ann’s preferences are summarized by a parameter $\theta_A \in \Theta_A$ (known to Ann), and similarly for Bob ("private values")

- natural to consider slightly different type spaces:
 - Ann has a set of types T_A, where a type is characterized by a payoff parameter $\hat{\theta}_A (t_A) \in \Theta_A$ and a belief $\hat{\pi}_A (t_A) \in \Delta(T_B)$
 - similarly for Bob
Universal Type Space with Private Values

- Ann’s universal type is her payoff parameter and
Ann’s universal type is her payoff parameter and

1. her belief about Bob’s payoff parameter
Ann’s universal type is her payoff parameter and

1. her belief about Bob’s payoff parameter
2. her belief about Bob’s belief and his payoff parameter
Ann’s universal type is her payoff parameter and

1. her belief about Bob’s payoff parameter
2. her belief about Bob’s belief and his payoff parameter
3. and so on...
Ann’s universal type is her payoff parameter and

1. her belief about Bob’s payoff parameter
2. her belief about Bob’s belief and his payoff parameter
3. and so on....

Ann’s universal type space is $T_A^* \simeq \Theta_A \times \Delta(T_B^*)$
Universal Type Space with Private Values

- Ann’s universal type is her payoff parameter and
 1. her belief about Bob’s payoff parameter
 2. her belief about Bob’s belief and his payoff parameter
 3. and so on....

- Ann’s universal type space is $T^*_A \approx \Theta_A \times \Delta (T^*_B)$

- Is a subset of our first universal type space
Relaxing Common Knowledge Assumptions in Coordination Game

- Suppose Ann is almost sure that $\theta_B \approx \frac{3}{4}$
Relaxing Common Knowledge Assumptions in Coordination Game

- Suppose Ann is almost sure that $\theta_B \approx \frac{3}{4}$
- Suppose Ann is almost sure that that Bob is almost sure that $\theta_A \approx \frac{3}{4}$
Relaxing Common Knowledge Assumptions in Coordination Game

- Suppose Ann is almost sure that $\theta_B \approx \frac{3}{4}$
- Suppose Ann is almost sure that that Bob is almost sure that $\theta_A \approx \frac{3}{4}$
- Suppose Ann is almost sure that that Bob is almost sure that Ann is almost sure that $\theta_B \approx \frac{3}{4}$
Relaxing Common Knowledge Assumptions in Coordination Game

- Suppose Ann is almost sure that $\theta_B \approx \frac{3}{4}$
- Suppose Ann is almost sure that that Bob is almost sure that $\theta_A \approx \frac{3}{4}$
- Suppose Ann is almost sure that that Bob is almost sure that Ann is almost sure that $\theta_B \approx \frac{3}{4}$
- and so on up to a arbitrarily large number of finite levels
Relaxing Common Knowledge Assumptions in Coordination Game

- Suppose Ann is almost sure that $\theta_B \approx \frac{3}{4}$
- Suppose Ann is almost sure that Bob is almost sure that $\theta_A \approx \frac{3}{4}$
- Suppose Ann is almost sure that Bob is almost sure that Ann is almost sure that $\theta_B \approx \frac{3}{4}$
- and so on up to an arbitrarily large number of finite levels
- technically, Ann’s type is in the universal type space is close in the product topology to the type with common knowledge of $(\frac{3}{4}, \frac{3}{4})$
Suppose Ann is almost sure that $\theta_B \approx \frac{3}{4}$

Suppose Ann is almost sure that that Bob is almost sure that $\theta_A \approx \frac{3}{4}$

Suppose Ann is almost sure that that Bob is almost sure that Ann is almost sure that $\theta_B \approx \frac{3}{4}$

and so on up to a arbitrarily large number of finite levels

technically, Ann’s type is in the universal type space is close in the product topology to the type with common knowledge of $(\frac{3}{4}, \frac{3}{4})$

what can we say about strategic behavior?
Rubinstein 89, Weinstein and Yildiz 07
Suppose that the state may be "good" with \((\theta_A, \theta_B) = (\frac{3}{4}, \frac{3}{4})\):

<table>
<thead>
<tr>
<th></th>
<th>Invest</th>
<th>Not Invest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invest</td>
<td>(\frac{3}{4}, \frac{3}{4})</td>
<td>(-\frac{1}{4}, 0)</td>
</tr>
<tr>
<td>Not Invest</td>
<td>0, (-\frac{1}{4})</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

but Bob may have a dominant strategy to not invest, so the state is "bad", with \((\theta_A, \theta_B) = (\frac{3}{4}, -1)\):

<table>
<thead>
<tr>
<th></th>
<th>Invest</th>
<th>Not Invest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invest</td>
<td>(\frac{3}{4}, -1)</td>
<td>(-\frac{1}{4}, 0)</td>
</tr>
<tr>
<td>Not Invest</td>
<td>0, (-2)</td>
<td>0, 0</td>
</tr>
</tbody>
</table>
Electronic Mail Game on Steroids

- If the state is good, Bob sends a message to Ann, reporting that the state is good.
Electronic Mail Game on Steroids

- If the state is good, Bob sends a message to Ann, reporting that the state is good
- If Ann receives the message, she sends a confirmation to Bob telling her that he received the message
Electronic Mail Game on Steroids

- If the state is good, Bob sends a message to Ann, reporting that the state is good
- If Ann receives the message, she sends a confirmation to Bob telling her that he received the message
- and so on....
Electronic Mail Game on Steroids

- If the state is good, Bob sends a message to Ann, reporting that the state is good
- If Ann receives the message, she sends a confirmation to Bob telling her that he received the message
- and so on....
- Suppose that players are pessimistic:
Electronic Mail Game on Steroids

- If the state is good, Bob sends a message to Ann, reporting that the state is good.
- If Ann receives the message, she sends a confirmation to Bob telling her that he received the message.
- and so on....
- Suppose that players are pessimistic:
 - If Ann does not receive a first message, she thinks that the state is bad with probability $1 - \varepsilon$.
Electronic Mail Game on Steroids

- If the state is good, Bob sends a message to Ann, reporting that the state is good.
- If Ann receives the message, she sends a confirmation to Bob telling her that he received the message.
- and so on....
- Suppose that players are pessimistic:
 - If Ann does not receive a first message, she thinks that the state is bad with probability $1 - \varepsilon$.
 - If a player does not receive a confirmation of his/her message, he/she thinks that the other player did not receive his/her message with probability $1 - \varepsilon$.
Infection Argument

- If Ann receives many confirmations, she is "close" (formally, in the product topology on the universal type space) to common knowledge that game is \((\theta_A, \theta_B) = \left(\frac{3}{4}, \frac{3}{4}\right)\)
Infection Argument

- If Ann receives many confirmations, she is "close" (formally, in the product topology on the universal type space) to common knowledge that game is \((\theta_A, \theta_B) = \left(\frac{3}{4}, \frac{3}{4}\right)\)

- However, "not invest" is the unique rationalizable (and thus equilibrium) action for this type of Ann
Infection Argument

- If Ann receives many confirmations, she is "close" (formally, in the product topology on the universal type space) to common knowledge that game is \((\theta_A, \theta_B) = \left(\frac{3}{4}, \frac{3}{4}\right)\)

- However, "not invest" is the unique rationalizable (and thus equilibrium) action for this type of Ann

- Proof:
Infection Argument

- If Ann receives many confirmations, she is "close" (formally, in the product topology on the universal type space) to common knowledge that game is $(\theta_A, \theta_B) = \left(\frac{3}{4}, \frac{3}{4} \right)$

- However, "not invest" is the unique rationalizable (and thus equilibrium) action for this type of Ann

Proof:

- In the bad state, Bob does not invest
Infection Argument

- If Ann receives many confirmations, she is "close" (formally, in the product topology on the universal type space) to common knowledge that game is \((\theta_A, \theta_B) = \left(\frac{3}{4}, \frac{3}{4}\right)\)

- However, "not invest" is the unique rationalizable (and thus equilibrium) action for this type of Ann

- Proof:
 - In the bad state, Bob does not invest
 - If Ann does not receive a message, she does not invest
Infection Argument

- If Ann receives many confirmations, she is "close" (formally, in the product topology on the universal type space) to common knowledge that game is \((\theta_A, \theta_B) = \left(\frac{3}{4}, \frac{3}{4}\right)\)

- However, "not invest" is the unique rationalizable (and thus equilibrium) action for this type of Ann

- Proof:
 - In the bad state, Bob does not invest
 - If Ann does not receive a message, she does not invest
 - If Bob receives only one message, she does not invest
Infection Argument

- If Ann receives many confirmations, she is "close" (formally, in the product topology on the universal type space) to common knowledge that game is \((\theta_A, \theta_B) = \left(\frac{3}{4}, \frac{3}{4}\right)\)

- However, "not invest" is the unique rationalizable (and thus equilibrium) action for this type of Ann

- Proof:
 - In the bad state, Bob does not invest
 - If Ann does not receive a message, she does not invest
 - If Bob receives only one message, she does not invest
 - and so on....
Infection Argument

- If Ann receives many confirmations, she is "close" (formally, in the product topology on the universal type space) to common knowledge that game is $(\theta_A, \theta_B) = (\frac{3}{4}, \frac{3}{4})$

- However, "not invest" is the unique rationalizable (and thus equilibrium) action for this type of Ann

- Proof:
 - In the bad state, Bob does not invest
 - If Ann does not receive a message, she does not invest
 - If Bob receives only one message, she does not invest
 - and so on...

- "On steroids" relative to Rubinstein 89 become we didn’t impose the common prior assumption
Infection Argument

- If Ann receives many confirmations, she is "close" (formally, in the product topology on the universal type space) to common knowledge that game is \((\theta_A, \theta_B) = \left(\frac{3}{4}, \frac{3}{4}\right)\)
- However, "not invest" is the unique rationalizable (and thus equilibrium) action for this type of Ann
- Proof:
 - In the bad state, Bob does not invest
 - If Ann does not receive a message, she does not invest
 - If Bob receives only one message, she does not invest
 - and so on....
- "On steroids" relative to Rubinstein 89 become we didn’t impose the common prior assumption
- Weinstein Yildiz 07 show that this logic is completely general: (roughly) any action that is rationalizable in a perfect information game is uniquely rationalizable for a nearby type in the product topology
von Neumann was right about one thing: cannot do much without making common knowledge assumptions....
Bad News?

- von Neumann was right about one thing: cannot do much without making common knowledge assumptions....
- but let us be sophisticated about what common knowledge assumptions we make
Bad News?

- von Neumann was right about one thing: cannot do much without making common knowledge assumptions....
- but let us be sophisticated about what common knowledge assumptions we make
- we don’t have assume perfect information or nothing
In the (private value) universal type space, a player’s "rank belief" is the probability that she assigns to her return to investment being higher than another player’s.
Good News?

- In the (private value) universal type space, a player’s "rank belief" is the probability that she assigns to her return to investment being higher than another player’s.

- Thus

\[r(t_A) = \Pr(x_B(t_B) < x_A(t_A) | t_A) \]
Good News?

- In the (private value) universal type space, a player’s "rank belief" is the probability that she assigns to her return to investment being higher than another player’s
- Thus
 \[r(t_A) = \Pr(x_B(t_B) < x_A(t_A) | t_A) \]
- for today’s talk, I will be vague about inequalities versus equalities; for simplicity, suppose
 \[r(t_A) = \Pr(x_B(t_B) = x_A(t_A) | t_A) = 0 \]
Good News?

- In the (private value) universal type space, a player’s "rank belief" is the probability that she assigns to her return to investment being higher than another player’s.

- Thus

\[r(t_A) = \Pr(x_B(t_B) < x_A(t_A) | t_A) \]

- for today’s talk, I will be vague about inequalities versus equalities; for simplicity, suppose

\[r(t_A) = \Pr(x_B(t_B) = x_A(t_A) | t_A) = 0 \]

- Assume common knowledge that both players’ rank beliefs are \(\frac{1}{2} \).
Good News?

- In the (private value) universal type space, a player's "rank belief" is the probability that she assigns to her return to investment being higher than another player’s.

Thus

$$r(t_A) = \Pr(x_B(t_B) < x_A(t_A) | t_A)$$

for today’s talk, I will be vague about inequalities versus equalities; for simplicity, suppose

$$r(t_A) = \Pr(x_B(t_B) = x_A(t_A) | t_A) = 0$$

Assume common knowledge that both players’ rank beliefs are $\frac{1}{2}$.

This is a major but explicit common knowledge assumption different from perfect information, or independent types, or usual assumptions we make....
Good News?

- In the (private value) universal type space, a player's "rank belief" is the probability that she assigns to her return to investment being higher than another player's.

- Thus

\[r(t_A) = \Pr(x_B(t_B) < x_A(t_A) \mid t_A) \]

- for today’s talk, I will be vague about inequalities versus equalities; for simplicity, suppose

\[r(t_A) = \Pr(x_B(t_B) = x_A(t_A) \mid t_A) = 0 \]

- Assume common knowledge that both players’ rank beliefs are \(\frac{1}{2} \).

- This is a major but explicit common knowledge assumption different from perfect information, or independent types, or usual assumptions we make.

- Claim: if there is common knowledge that rank beliefs are uniform (i.e., \(\frac{1}{2} \)), then players have unique rationalizable actions. They always play the *risk dominant* action, i.e., invest if \(x_A > \frac{1}{2} \) and not invest if \(x_A < \frac{1}{2} \).
Good News?

In the (private value) universal type space, a player’s "rank belief" is the probability that she assigns to her return to investment being higher than another player’s.

Thus

\[r(t_A) = Pr(x_B(t_B) < x_A(t_A) | t_A) \]

for today’s talk, I will be vague about inequalities versus equalities; for simplicity, suppose

\[r(t_A) = Pr(x_B(t_B) = x_A(t_A) | t_A) = 0 \]

Assume common knowledge that both players’ rank beliefs are \(\frac{1}{2} \).

This is a major but explicit common knowledge assumption different from perfect information, or independent types, or usual assumptions we make....

Claim: if there is common knowledge that rank beliefs are uniform (i.e., \(\frac{1}{2} \)), then players have unique rationalizable actions. They always play the risk dominant action, i.e., invest if \(x_A > \frac{1}{2} \) and not invest if \(x_A < \frac{1}{2} \).
Good News?

- In the (private value) universal type space, a player’s "rank belief" is the probability that she assigns to her return to investment being higher than another player’s.

- Thus

\[r(t_A) = \Pr(x_B(t_B) < x_A(t_A) | t_A) \]

- for today’s talk, I will be vague about inequalities versus equalities; for simplicity, suppose

\[r(t_A) = \Pr(x_B(t_B) = x_A(t_A) | t_A) = 0 \]

- Assume common knowledge that both players’ rank beliefs are \(\frac{1}{2} \).

- This is a major but explicit common knowledge assumption different from perfect information, or independent types, or usual assumptions we make.

- Claim: if there is common knowledge that rank beliefs are uniform (i.e., \(\frac{1}{2} \)), then players have unique rationalizable actions. They always play the *risk dominant* action, i.e., invest if \(x_A > \frac{1}{2} \) and not invest if \(x_A < \frac{1}{2} \).
Informational Robustness

- in economic theory, we often distinguish...
Informational Robustness

- In economic theory, we often distinguish:
 - Exogenous variables...
Informational Robustness

- In economic theory, we often distinguish:
 - Exogenous variables...
 - Endogenous variables...
Informational Robustness

- in economic theory, we often distinguish...
Informational Robustness

- in economic theory, we often distinguish...
 - exogenous variables...
Informational Robustness

- in economic theory, we often distinguish:
 - exogenous variables...
 - description of the game, players, actions, states, payoff functions, information structure
Informational Robustness

- in economic theory, we often distinguish:
 - exogenous variables...
 - description of the game, players, actions, states, payoff functions, information structure
 - endogenous variables...
Informational Robustness

- In economic theory, we often distinguish:
 - exogenous variables...
 - description of the game, players, actions, states, payoff functions, information structure
 - endogenous variables...
 - strategies
Informational Robustness

- in economic theory, we often distinguish....
 - exogenous variables...
 - description of the game, players, actions, states, payoff functions, information structure
 - endogenous variables...
 - strategies
- find equilibrium of fixed game
Informationally Robust Analysis

- examine all (or many) information structures at once...
Informationally Robust Analysis

- examine all (or many) information structures at once...
- characterize the set of equilibria that might result for all information structures
Informationally Robust Analysis

- examine all (or many) information structures at once...
- characterize the set of equilibria that might result for all information structures
- relax all common knowledge assumptions (maintaining the common prior assumption)
Informationally Robust Analysis

- examine all (or many) information structures at once...
- characterize the set of equilibria that might result for all information structures
- relax all common knowledge assumptions (*maintaining the common prior assumption*)
- why is this useful (and feasible)?
Informationally Robust Analysis

1. Robust Predictions
Informationally Robust Analysis

1. Robust Predictions
2. Robust Identification
Informationally Robust Analysis

1. Robust Predictions
2. Robust Identification
3. Information Design
Example: Third Degree Price Discrimination

- Bergemann, Brooks and Morris (2015)
Example: Third Degree Price Discrimination

- Bergemann, Brooks and Morris (2015)
- Demand curve for a good represents single unit demand of a continuum of consumers

Two special cases:
- no information = uniform price monopoly
- producer charges uniform monopoly price, giving consumer surplus u and producer surplus π

Full information = perfect price discrimination
- consumer gets zero surplus and producer extracts efficient surplus $w > \pi + u$

Robust Prediction: What can we say about all (consumer surplus, producer surplus) pairs that can arise?
Example: Third Degree Price Discrimination

- Bergemann, Brooks and Morris (2015)
- Demand curve for a good represents single unit demand of a continuum of consumers
- What can happen to consumer surplus, producer surplus and thus total surplus for any information that the seller has about consumers?

Two special cases:
- no information = uniform price monopoly
- full information = perfect price discrimination

- consumer gets zero surplus and producer extracts efficient surplus $\pi > \mu$

Robust Prediction: What can we say about all (consumer surplus, producer surplus) pairs that can arise?
Example: Third Degree Price Discrimination

- Bergemann, Brooks and Morris (2015)
- Demand curve for a good represents single unit demand of a continuum of consumers
- What can happen to consumer surplus, producer surplus and thus total surplus for any information that the seller has about consumers?
- Two special cases:
Example: Third Degree Price Discrimination

- Bergemann, Brooks and Morris (2015)
- Demand curve for a good represents single unit demand of a continuum of consumers
- What can happen to consumer surplus, producer surplus and thus total surplus for *any* information that the seller has about consumers?
- Two special cases:
 - no information = uniform price monopoly
Example: Third Degree Price Discrimination

- Bergemann, Brooks and Morris (2015)
- Demand curve for a good represents single unit demand of a continuum of consumers
- What can happen to consumer surplus, producer surplus and thus total surplus for *any* information that the seller has about consumers?
- Two special cases:
 - no information = uniform price monopoly
 - producer charges uniform monopoly price, giving consumer surplus u^* and producer surplus π^*
Example: Third Degree Price Discrimination

- Bergemann, Brooks and Morris (2015)
- Demand curve for a good represents single unit demand of a continuum of consumers
- What can happen to consumer surplus, producer surplus and thus total surplus for any information that the seller has about consumers?
- Two special cases:
 - no information = uniform price monopoly
 - producer charges uniform monopoly price, giving consumer surplus \(u^* \) and producer surplus \(\pi^* \)
 - full information = perfect price discrimination
Example: Third Degree Price Discrimination

- Bergemann, Brooks and Morris (2015)
- Demand curve for a good represents single unit demand of a continuum of consumers
- What can happen to consumer surplus, producer surplus and thus total surplus for any information that the seller has about consumers?
- Two special cases:
 - no information = uniform price monopoly
 - producer charges uniform monopoly price, giving consumer surplus u^* and producer surplus π^*
 - full information = perfect price discrimination
 - consumer gets zero surplus and producer extracts efficient surplus $w^* > \pi^* + u^*$

Robust Prediction: What can we say about all (consumer surplus, producer surplus) pairs that can arise?
Example: Third Degree Price Discrimination

- Bergemann, Brooks and Morris (2015)
- Demand curve for a good represents single unit demand of a continuum of consumers
- What can happen to consumer surplus, producer surplus and thus total surplus for any information that the seller has about consumers?
- Two special cases:
 - no information = uniform price monopoly
 - producer charges uniform monopoly price, giving consumer surplus u^* and producer surplus π^*
 - full information = perfect price discrimination
 - consumer gets zero surplus and producer extracts efficient surplus $w^* > \pi^* + u^*$
- Robust Prediction: What can we say about all (consumer surplus, producer surplus) pairs that can arise?
A Pictorial Characterization

![Graph showing Consumer surplus and Producer surplus]
The Uniform Price Monopoly

- producer charges (uniform) monopoly price
- consumers get positive consumer surplus, socially inefficient allocation
First Degree Price Discrimination: Perfect Discrimination

- producer extracts full surplus
- consumers get zero surplus, but socially efficient allocation
Welfare Bounds: Voluntary Participation

Consumer surplus is at least zero

Producer surplus

\(\pi^* \)

\(w^* \)

Consumer surplus

\(u^* \)

0
Welfare Bounds: Nonnegative Value of Information

Producer gets at least uniform price profit

\[\pi^* \]

\[w^* \]

0

Consumer surplus
Welfare Bounds: Social Surplus

Total surplus is bounded by efficient outcome

\[\begin{align*}
\text{Producer surplus} & \quad \text{Consumer surplus} \\
\pi^* & \quad w^* \\
0 & \quad 0
\end{align*} \]
What is the feasible surplus set?

The diagram illustrates the relationship between consumer surplus and producer surplus in a market. The feasible surplus set is represented by the shaded area, which is bounded by the lines indicating consumer surplus and producer surplus. The set must be convex, as indicated by the shape of the shaded area.
Main Result: No More Robust Predictions!

\[\text{Main result} \]

\[\begin{align*}
\text{Producer surplus} & \quad w^* \\
\text{Consumer surplus} & \quad \pi^* \\
\end{align*} \]
Example

- $\frac{1}{3}$ of consumers have valuation 1, $\frac{1}{3}$ have valuation 2 and $\frac{1}{3}$ have valuation 3

- optimal prices:

$$p^* = 2$$
$$p^* = 3$$
$$p^* = 1$$
A segmentation of the three value uniform aggregate market:

<table>
<thead>
<tr>
<th></th>
<th>(v = 1)</th>
<th>(v = 2)</th>
<th>(v = 3)</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>market 1</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{6})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{2}{3})</td>
</tr>
<tr>
<td>market 2</td>
<td>0</td>
<td>(\frac{1}{3})</td>
<td>(\frac{2}{3})</td>
<td>(\frac{1}{6})</td>
</tr>
<tr>
<td>market 3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>(\frac{1}{6})</td>
</tr>
<tr>
<td>total</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{3})</td>
<td></td>
</tr>
</tbody>
</table>
"Extremal Segmentation"

<table>
<thead>
<tr>
<th></th>
<th>(v = 1)</th>
<th>(v = 2)</th>
<th>(v = 3)</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>({1, 2, 3})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{6})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{2}{3})</td>
</tr>
<tr>
<td>({2, 3})</td>
<td>0</td>
<td>(\frac{1}{3})</td>
<td>(\frac{2}{3})</td>
<td>(\frac{1}{6})</td>
</tr>
<tr>
<td>({2})</td>
<td>0</td>
<td>(\frac{1}{3})</td>
<td>0</td>
<td>(\frac{1}{6})</td>
</tr>
<tr>
<td>total</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{3})</td>
<td></td>
</tr>
</tbody>
</table>

- price 2 is optimal in all markets
- in fact, seller is always indifferent between all prices in the support of the market
- this is always possible to do (this is the meat of our general argument)
Geometry of Extremal Markets

- extremal segment x^S: seller is indifferent between all prices in the support of S
an optimal policy: always charge lowest price in the support of every segment:

<table>
<thead>
<tr>
<th></th>
<th>(v = 1)</th>
<th>(v = 2)</th>
<th>(v = 3)</th>
<th>price</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>({1, 2, 3})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{6})</td>
<td>(\frac{1}{3})</td>
<td>1</td>
<td>(\frac{2}{3})</td>
</tr>
<tr>
<td>({2, 3})</td>
<td>0</td>
<td>(\frac{1}{3})</td>
<td>(\frac{2}{3})</td>
<td>2</td>
<td>(\frac{1}{6})</td>
</tr>
<tr>
<td>({2})</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>(\frac{1}{6})</td>
</tr>
<tr>
<td>total</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{3})</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Social Surplus Minimizing Segmentation

- all incentive constraints in the support are binding
- another optimal policy: always charge highest price in each segment:

<table>
<thead>
<tr>
<th></th>
<th>(v = 1)</th>
<th>(v = 2)</th>
<th>(v = 3)</th>
<th>price</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>({1, 2, 3})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{6})</td>
<td>(\frac{1}{3})</td>
<td>3</td>
<td>(\frac{2}{3})</td>
</tr>
<tr>
<td>({2, 3})</td>
<td>0</td>
<td>(\frac{1}{3})</td>
<td>(\frac{2}{3})</td>
<td>3</td>
<td>(\frac{1}{6})</td>
</tr>
<tr>
<td>({2})</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>(\frac{1}{6})</td>
</tr>
<tr>
<td>total</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{3})</td>
<td>(\frac{1}{3})</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Robust Predictions

- In this example, surprisingly weak
Robust Predictions

- In this example, surprisingly weak
- In other settings, there are... e.g., first price auction
Robust Identification

- What can be inferred from prices about valuations?
Robust Identification

- What can be inferred from prices about valuations?
- Very little.....
Consider the problem of an "information designer" who could pick (and commit to) an information structure to give to the monopolist.
Consider the problem of an "information designer" who could pick (and commit to) an information structure to give to the monopolist. If the designer had the joint interest of consumers in mind he would pick the bottom right hand corner.
Consider the problem of an "information designer" who could pick (and commit to) an information structure to give to the monopolist. If the designer had the joint interest of consumers in mind he would pick the bottom right hand corner. Compare Kamenica and Gentzkow (2011).
Wilson (1987): (more complete quote)

Game theory has a great advantage in explicitly analyzing the consequences of trading rules that presumably are really common knowledge; it is deficient to the extent that it assumes other features to be common knowledge, such as one agent’s probability assessment about another’s preferences or information.

I foresee the progress of game theory as depending on successive reductions in the base of common knowledge required to conduct useful analyses of practical problems. Only by repeated weakening of common knowledge assumptions will the theory approximate reality.”
The Misunderstanding of John Harsanyi and Mechanism Design

- Mechanism design

We would really like to assume that there is complete information about the game/mechanism. It is particularly desirable to relax common knowledge assumptions about the environment, because optimal mechanisms are otherwise too finely tuned.

Contrast this with economic theory/game theory; really important to relax common knowledge of the mechanism (John Sutton and IO). Common knowledge of the environment is maybe (at least a bit) less of a problem.

One response to misunderstanding: do not address "incomplete information", focus on simple mechanisms, computational constraints, worst case analysis, etc...

Another response: take relaxing common knowledge assumptions seriously and allowing real incomplete information in mechanism design. This may rationalize simple/detail-free mechanisms (and suggest new questions).
The Misunderstanding of John Harsanyi and Mechanism Design

- Mechanism design
 - we would really like to assume that there is complete information about the game/mechanism
The Misunderstanding of John Harsanyi and Mechanism Design

- Mechanism design
 - we would really like to assume that there is complete information about the *game/mechanism*
 - it is particularly desirable to relax common knowledge assumptions about the environment, because optimal mechanisms are otherwise too finely tuned
The Misunderstanding of John Harsanyi and Mechanism Design

- Mechanism design
 - we would really like to assume that there is complete information about the *game/mechanism*
 - it is particularly desirable to relax common knowledge assumptions about the environment, because optimal mechanisms are otherwise too finely tuned
- Contrast this with economic theory / game theory
The Misunderstanding of John Harsanyi and Mechanism Design

- Mechanism design
 - we would really like to assume that there is complete information about the game/mechanism
 - it is particularly desirable to relax common knowledge assumptions about the environment, because optimal mechanisms are otherwise too finely tuned

- Contrast this with economic theory / game theory
 - really important to relax common knowledge of the mechanism (John Sutton and IO)
The Misunderstanding of John Harsanyi and Mechanism Design

- Mechanism design
 - we would really like to assume that there is complete information about the game/mechanism
 - it is particularly desirable to relax common knowledge assumptions about the environment, because optimal mechanisms are otherwise too finely tuned

- Contrast this with economic theory / game theory
 - really important to relax common knowledge of the mechanism (John Sutton and IO)
 - common knowledge of the environment is maybe (at least a bit) less of a problem
The Misunderstanding of John Harsanyi and Mechanism Design

- Mechanism design
 - we would really like to assume that there is complete information about the game/mechanism
 - it is particularly desirable to relax common knowledge assumptions about the environment, because optimal mechanisms are otherwise too finely tuned
- Contrast this with economic theory / game theory
 - really important to relax common knowledge of the mechanism (John Sutton and IO)
 - common knowledge of the environment is maybe (at least a bit) less of a problem
- One response to misunderstanding: do not address "incomplete information", focus on simple mechanisms, computational constraints, worst case analysis, etc...
The Misunderstanding of John Harsanyi and Mechanism Design

- Mechanism design
 - we would really like to assume that there is complete information about the game/mechanism
 - it is particularly desirable to relax common knowledge assumptions about the environment, because optimal mechanisms are otherwise too finely tuned

- Contrast this with economic theory / game theory
 - really important to relax common knowledge of the mechanism (John Sutton and IO)
 - common knowledge of the environment is maybe (at least a bit) less of a problem

- One response to misunderstanding: do not address "incomplete information", focus on simple mechanisms, computational constraints, worst case analysis, etc...

- Another response:
The Misunderstanding of John Harsanyi and Mechanism Design

- Mechanism design
 - we would really like to assume that there is complete information about the *game/mechanism*
 - it is particularly desirable to relax common knowledge assumptions about the environment, because optimal mechanisms are otherwise too finely tuned
- Contrast this with economic theory / game theory
 - really important to relax common knowledge of the mechanism (John Sutton and IO)
 - common knowledge of the environment is maybe (at least a bit) less of a problem
- One response to misunderstanding: do not address "incomplete information", focus on simple mechanisms, computational constraints, worst case analysis, etc...
- Another response:
 - take relaxing common knowledge assumptions seriously and allowing real incomplete information in mechanism design
The Misunderstanding of John Harsanyi and Mechanism Design

- Mechanism design
 - we would really like to assume that there is complete information about the *game/mechanism*
 - it is particularly desirable to relax common knowledge assumptions about the environment, because optimal mechanisms are otherwise too finely tuned

- Contrast this with economic theory / game theory
 - really important to relax common knowledge of the mechanism (John Sutton and IO)
 - common knowledge of the environment is maybe (at least a bit) less of a problem

- One response to misunderstanding: do not address "incomplete information", focus on simple mechanisms, computational constraints, worst case analysis, etc...

- Another response:
 - take relaxing common knowledge assumptions seriously and allowing real incomplete information in mechanism design this way not time disciplines / detail for mechanisms (e.g.,
Type Space Restrictions = Implicit Common Knowledge
Assumptions

- Common to assume:
Type Space Restrictions $=$ Implicit Common Knowledge Assumptions

- Common to assume:
 1. naive type space (identify types with payoff parameters)
Type Space Restrictions = Implicit Common Knowledge
Assumptions

- Common to assume:
 1. naive type space (identify types with payoff parameters)
 2. common prior (beliefs could have been derived from common prior and Bayes updating)
Type Space Restrictions = Implicit Common Knowledge

Assumptions

- Common to assume:
 1. naive type space (identify types with payoff parameters)
 2. common prior (beliefs could have been derived from common prior and Bayes updating)
 3. and either *independence* or beliefs determine payoff parameters (*BDP*: Neeman 2004) implied by generic beliefs on naive type space

Sometimes implicitly or explicitly trying to implement on all types spaces in some class (e.g., all naive common prior independent type spaces)

Implementing on the universal type space is the same (modulo technicalities) as implementing on all types spaces
Type Space Restrictions = Implicit Common Knowledge
Assumptions

- Common to assume:
 1. naive type space (identify types with payoff parameters)
 2. common prior (beliefs could have been derived from common prior and Bayes updating)
 3. and either *independence* or beliefs determine payoff parameters (*BDP*: Neeman 2004) implied by generic beliefs on naive type space

- Sometimes implicitly or explicitly trying to implement on all types spaces in some class (e.g., all naive common prior independent type spaces)
Type Space Restrictions = Implicit Common Knowledge
Assumptions

- Common to assume:
 1. naive type space (identify types with payoff parameters)
 2. common prior (beliefs could have been derived from common prior and Bayes updating)
 3. and either independence or beliefs determine payoff parameters (BDP: Neeman 2004) implied by generic beliefs on naive type space

- Sometimes implicitly or explicitly trying to implement on all types spaces in some class (e.g., all naive common prior independent type spaces)

- Implementing on the universal type space is the same (modulo technicalities) as implementing on all types spaces
Funny Result 1: Full Surplus Extraction

- Consider the private good allocation problem with private values and transfers. Easy to implement the efficient allocation. But two key results about revenue:
Funny Result 1: Full Surplus Extraction

- Consider the private good allocation problem with private values and transfers. Easy to implement the efficient allocation. But two key results about revenue:
 - with independent naive common prior type space, buyers earn information rent
Funny Result 1: Full Surplus Extraction

Consider the private good allocation problem with private values and transfers. Easy to implement the efficient allocation. But two key results about revenue:

- with independent naive common prior type space, buyers earn information rent
- with BDP naive common prior type space, efficient allocation and full surplus extraction
Funny Result 1: Full Surplus Extraction

- Consider the private good allocation problem with private values and transfers. Easy to implement the efficient allocation. But two key results about revenue:
 - with independent naive common prior type space, buyers earn information rent
 - with BDP naive common prior type space, efficient allocation and full surplus extraction
 - players can be given a strictly positive incentive to truthfully announce their types via bets at no expected cost
Funny Result 1: Full Surplus Extraction

- Consider the private good allocation problem with private values and transfers. Easy to implement the efficient allocation. But two key results about revenue:
 - with independent naive common prior type space, buyers earn information rent
 - with BDP naive common prior type space, efficient allocation and full surplus extraction
 - players can be given a strictly positive incentive to truthfully announce their types via bets at no expected cost

- One response:
Funny Result 1: Full Surplus Extraction

- Consider the private good allocation problem with private values and transfers. Easy to implement the efficient allocation. But two key results about revenue:
 - with independent naive common prior type space, buyers earn information rent
 - with BDP naive common prior type space, efficient allocation and full surplus extraction
 - players can be given a strictly positive incentive to truthfully announce their types via bets at no expected cost
- One response:
 - BDP does (or does not) hold generically on the universal type space
Funny Result 1: Full Surplus Extraction

- Consider the private good allocation problem with private values and transfers. Easy to implement the efficient allocation. But two key results about revenue:
 - with independent naive common prior type space, buyers earn information rent
 - with BDP naive common prior type space, efficient allocation and full surplus extraction
 - players can be given a strictly positive incentive to truthfully announce their types via bets at no expected cost

- One response:
 - BDP does (or does not) hold generically on the universal type space

- Nuanced response:
Funny Result 1: Full Surplus Extraction

- Consider the private good allocation problem with private values and transfers. Easy to implement the efficient allocation. But two key results about revenue:
 - with independent naive common prior type space, buyers earn information rent
 - with BDP naive common prior type space, efficient allocation and full surplus extraction
 - players can be given a strictly positive incentive to truthfully announce their types via bets at no expected cost

- One response:
 - BDP does (or does not) hold generically on the universal type space

- Nuanced response:
 - There is not full surplus extraction on the universal type space
Funny Result 1: Full Surplus Extraction

- Consider the private good allocation problem with private values and transfers. Easy to implement the efficient allocation. But two key results about revenue:
 - with independent naive common prior type space, buyers earn information rent
 - with BDP naive common prior type space, efficient allocation and full surplus extraction
 - players can be given a strictly positive incentive to truthfully announce their types via bets at no expected cost

- One response:
 - BDP does (or does not) hold generically on the universal type space

- Nuanced response:
 - There is not full surplus extraction on the universal type space
 - Take a position on which types in the universal type space are relevant
Funny Result 2: Prior Extraction

- Consider a public goods problem with private values and budget balanced transfers. Two key public good results:

- Not possible to implement efficient choice in dominant strategies.
- Possible to implement efficient choice in (Bayes) Nash equilibrium with independent types, AGV (see also Arrow).

But what if the prior is not known? Two responses:

- Back to dominant strategies and negative results.
- Prior extraction: ask players to report their common prior and shoot them if they report something different.

Alternative nuanced response: relax union of common prior naive type spaces assumption to universal type space. Nuanced conclusion:

- Implementation of the efficient outcome in Bayes Nash equilibrium on universal type space may or may not be equivalent to dominant strategies implementation.
Funny Result 2: Prior Extraction

- Consider a public goods problem with private values and budget balanced transfers. Two key public good results:
 - Not possible to implement efficient choice in dominant strategies
Funny Result 2: Prior Extraction

- Consider a public goods problem with private values and budget balanced transfers. Two key public good results:
 - Not possible to implement efficient choice in dominant strategies
 - Possible to implement efficient choice in (Bayes) Nash equilibrium

But what if the prior is not known? Two responses:
- back to dominant strategies and negative results
- prior extraction: ask players to report their common prior and shoot them if they report something different

Alternative nuanced response: relax union of common prior naive type spaces assumption to universal type space.

Nuanced conclusion:
- Implementation of the efficient outcome in Bayes Nash equilibrium on universal type space may or may not be equivalent to dominant strategies implementation
Funny Result 2: Prior Extraction

- Consider a public goods problem with private values and budget balanced transfers. Two key public good results:
 - Not possible to implement efficient choice in dominant strategies
 - Possible to implement efficient choice in (Bayes) Nash equilibrium
 - with independent types, AGV (see also Arrow)

- But what if the prior is not known? Two responses:
 - back to dominant strategies and negative results
 - prior extraction: ask players to report their common prior and shoot them if they report something different

- Alternative nuanced response: relax union of common prior naive type spaces assumption to universal type space.
 - Nuanced conclusion:
 - Implementation of the efficient outcome in Bayes Nash equilibrium on universal type space may or may not be equivalent to dominant strategies implementation
Funny Result 2: Prior Extraction

- Consider a public goods problem with private values and budget balanced transfers. Two key public good results:
 - Not possible to implement efficient choice in dominant strategies
 - Possible to implement efficient choice in (Bayes) Nash equilibrium
 - with independent types, AGV (see also Arrow)
- But what if the prior is not known? Two responses:
Funny Result 2: Prior Extraction

- Consider a public goods problem with private values and budget balanced transfers. Two key public good results:
 - Not possible to implement efficient choice in dominant strategies
 - Possible to implement efficient choice in (Bayes) Nash equilibrium
 - with independent types, AGV (see also Arrow)
- But what if the prior is not known? Two responses:
 - back to dominant strategies and negative results
Funny Result 2: Prior Extraction

- Consider a public goods problem with private values and budget balanced transfers. Two key public good results:
 - Not possible to implement efficient choice in dominant strategies
 - Possible to implement efficient choice in (Bayes) Nash equilibrium
 - with independent types, AGV (see also Arrow)
- But what if the prior is not known? Two responses:
 - back to dominant strategies and negative results
 - prior extraction: ask players to report their common prior and shoot them if they report something different
Funny Result 2: Prior Extraction

- Consider a public goods problem with private values and budget balanced transfers. Two key public good results:
 - Not possible to implement efficient choice in dominant strategies
 - Possible to implement efficient choice in (Bayes) Nash equilibrium
 - with independent types, AGV (see also Arrow)
- But what if the prior is not known? Two responses:
 - back to dominant strategies and negative results
 - prior extraction: ask players to report their common prior and shoot them if they report something different
- Alternative nuanced response: relax union of common prior naive type spaces assumption to universal type space. Nuanced conclusion:
Funny Result 2: Prior Extraction

- Consider a public goods problem with private values and budget balanced transfers. Two key public good results:
 - Not possible to implement efficient choice in dominant strategies
 - Possible to implement efficient choice in (Bayes) Nash equilibrium
 - with independent types, AGV (see also Arrow)
- But what if the prior is not known? Two responses:
 - back to dominant strategies and negative results
 - prior extraction: ask players to report their common prior and shoot them if they report something different
- Alternative nuanced response: relax union of common prior naive type spaces assumption to universal type space.
 Nuanced conclusion:
 - Implementation of the efficient outcome in Bayes Nash equilibrium on universal type space may or may not be equivalent to dominant strategies implementation
Relaxing Private Values Assumption

- Maintained common knowledge assumption in discussion so far: private values

\[v_A = \theta_A + \gamma \theta_B \]

Analogously, Bob's value is

\[v_B = \theta_B + \gamma \theta_A \]
Relaxing Private Values Assumption

- Maintained common knowledge assumption in discussion so far: private values
- Let’s relax this assumption

Suppose that values are interdependent:

- Ann’s value of an object is $v_A = \theta_A + \gamma \theta_B$ for some $0 < \gamma < 1$
- Analogously, Bob’s value is $v_B = \theta_B + \gamma \theta_A$
Relaxing Private Values Assumption

- Maintained common knowledge assumption in discussion so far: private values
- Let’s relax this assumption
- Suppose that values are interdependent
Relaxing Private Values Assumption

- Maintained common knowledge assumption in discussion so far: private values
- Let’s relax this assumption
- Suppose that values are interdependent
- Ann’s value of an object is $v_A = \theta_A + \gamma \theta_B$ for some $0 < \gamma < 1$
Relaxing Private Values Assumption

- Maintained common knowledge assumption in discussion so far: private values
- Let’s relax this assumption
- Suppose that values are interdependent
- Ann’s value of an object is $v_A = \theta_A + \gamma \theta_B$ for some $0 < \gamma < 1$
- Analogously, Bob’s value is $v_B = \theta_B + \gamma \theta_A$
Three Interpretations

1. θ_A is Ann’s consumption value but it is possible that Ann will have to re-sell to Bob, extracting proportion γ of Bob’s value
Three Interpretations

1. θ_A is Ann’s consumption value but it is possible that Ann will have to re-sell to Bob, extracting proportion γ of Bob’s value.

2. Ann and Bob each have a signal that confounds a common value and private value component (cannot be distinguished).
Implicit Common Knowledge Assumptions and Interdependent Values

In example, we have single good interdependent values example, we had

\[v_A = \theta_A + \gamma \theta_B \]
\[v_B = \theta_B + \gamma \theta_A \]
Implicit Common Knowledge Assumptions and Interdependent Values

- In example, we have single good interdependent values example, we had

\[v_A = \theta_A + \gamma \theta_B \quad \text{and} \quad v_B = \theta_B + \gamma \theta_A \]

- By linear algebra, we have

\[\theta_A = \frac{1}{1 - \gamma^2} (v_A - \gamma v_B) \quad \text{and} \quad \theta_B = \frac{1}{1 - \gamma^2} (v_B - \gamma v_A) \]
Implicit Common Knowledge Assumptions and Interdependent Values

- In example, we have single good interdependent values
 example, we had

\[v_A = \theta_A + \gamma \theta_B \quad \text{and} \quad v_B = \theta_B + \gamma \theta_A \]

- By linear algebra, we have

\[\theta_A = \frac{1}{1 - \gamma^2} \left(v_A - \gamma v_B \right) \quad \text{and} \quad \theta_B = \frac{1}{1 - \gamma^2} \left(v_B - \gamma v_A \right) \]

- So if we considered the player specific payoff parameter
 universal type space for \((\theta_A, \theta_B)\), we were implicitly assuming
 that there was common knowledge that Ann knows \(v_A - \gamma v_B\)
 and Bob knows \(v_B - \gamma v_A\)
Implicit Common Knowledge Assumptions and Interdependent Values

- In example, we have single good interdependent values example, we had
 \[v_A = \theta_A + \gamma \theta_B \quad \text{and} \quad v_B = \theta_B + \gamma \theta_A \]

- By linear algebra, we have
 \[\theta_A = \frac{1}{1 - \gamma^2} (v_A - \gamma v_B) \quad \text{and} \quad \theta_B = \frac{1}{1 - \gamma^2} (v_B - \gamma v_A) \]

- So if we considered the player specific payoff parameter universal type space for \((\theta_A, \theta_B)\), we were implicitly assuming that there was common knowledge that Ann knows \(v_A - \gamma v_B\) and Bob knows \(v_B - \gamma v_A\)

- Whether this makes sense depends on the interpretation
Should actually distinguish "higher order preference types", e.g.,

1. first order valuation: Ann’s unconditional value of an object,

Thus we are looking higher order preferences over acts
Should actually distinguish "higher order preference types", e.g.,

1. first order valuation: Ann’s unconditional value of an object,
2. second order belief and valuation:
 - Ann’s belief about Bob’s first order valuation
 - Ann’s valuation conditional on Bob’s first order valuations
3. third order belief and valuation:
 - Ann’s belief about Bob’s second order type
 - Ann’s valuation conditional on Bob’s second order type
4. and so on

Thus we are looking higher order preferences over acts
Should actually distinguish "higher order preference types", e.g.,

1. first order valuation: Ann’s unconditional value of an object,
2. second order belief and valuation:
 ▶ Ann’s belief about Bob’s first order valuation

Thus we are looking higher order preferences over acts
Canonical Preference Higher-Order Preference Types

Should actually distinguish "higher order preference types", e.g.,

1. first order valuation: Ann’s unconditional value of an object,
2. second order belief and valuation:
 - Ann’s belief about Bob’s first order valuation
 - Ann’s valuation conditional on Bob’s first order valuations

Thus we are looking higher order preferences over acts
Should actually distinguish "higher order preference types", e.g.,

1. first order valuation: Ann’s unconditional value of an object,
2. second order belief and valuation:
 - Ann’s belief about Bob’s first order valuation
 - Ann’s valuation conditional on Bob’s first order valuations
3. third order belief and valuation:

Thus we are looking higher order preferences over acts
Should actually distinguish "higher order preference types", e.g.,

1. first order valuation: Ann’s unconditional value of an object,
2. second order belief and valuation:
 - Ann’s belief about Bob’s first order valuation
 - Ann’s valuation conditional on Bob’s first order valuations
3. third order belief and valuation:
 - Ann’s belief about Bob’s second order type

Thus we are looking higher order preferences over acts
Canonical Preference Higher-Order Preference Types

Should actually distinguish "higher order preference types", e.g.,

1. first order valuation: Ann’s unconditional value of an object,
2. second order belief and valuation:
 - Ann’s belief about Bob’s first order valuation
 - Ann’s valuation conditional on Bob’s first order valuations
3. third order belief and valuation:
 - Ann’s belief about Bob’s second order type
 - Ann’s valuation conditional on Bob’s second order type

Thus we are looking higher order preferences over acts
Should actually distinguish "higher order preference types", e.g.,

1. first order valuation: Ann’s unconditional value of an object,
2. second order belief and valuation:
 - Ann’s belief about Bob’s first order valuation
 - Ann’s valuation conditional on Bob’s first order valuations
3. third order belief and valuation:
 - Ann’s belief about Bob’s second order type
 - Ann’s valuation conditional on Bob’s second order type
4. and so on

Thus we are looking higher order preferences over acts
Can represent all higher-order preference types by universal space $T^* = \Delta(T^* \times \{0, 1\})$
Can represent all higher-order preference types by universal space \(T^* = \Delta (T^* \times \{0, 1\}) \)

In this representation, Ann’s probability of state 1 is her unconditional valuation of the object
Can represent all higher-order preference types by universal space $T^* = \Delta(T^* \times \{0, 1\})$

In this representation, Ann’s probability of state 1 is her unconditional valuation of the object

Higher order preference types correspond exactly to what would be learnt about players
Universal Higher-Order Preference Type Space

- Can represent all higher-order preference types by universal space $T^* = \Delta (T^* \times \{0, 1\})$
- In this representation, Ann’s probability of state 1 is her unconditional valuation of the object
- Higher order preference types correspond exactly to what would be learnt about players
- Selling on the higher-order preference type space is complicated
Conclusion

- Incomplete information has not been fully incorporated into economic analysis.
- Results are driven by implicit common knowledge whose role is sometimes not well understood.
- But relaxing all common knowledge assumptions may be possible but unhelpful.
- Focus on which are reasonable common knowledge assumptions and make them explicit.