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In this paper we study a Hamilton-Jacobi equation related to the boundary
control of a parabelic equation with Neumann boundary conditions. The state
space of this problem is a Hilbert space and the equation is defined classically only
on a dense subset of the state space. Moreover the Hamiltonian appearing in the
equation contains fractional powers of an unbounded operator. These facts render
the problem difficult. In this paper we give a revised definition of a viscosity
solution to accommodate the unboundness of the Hamiltonian. We then obtain
existence and uniqueness results for viscosity solutions. In particular we show that
under suitabie assumptions the value function of the boundary control problem is
the unique viscosity solution of the related Hamilton-Jacobi equation. ¢ 1993

Academic Press, Inc.

{. INTRODUCTION

This paper is concerned with the Hamilton-Jacobi equation,
Au(x)+ H(x, 6 Vu(x)) — (Ax + F(x), Vu(x)> =0, xeX, (1.1)
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26 CANNARSA, GOZZ1, AND SONER

where X is a real Hilbert space with norm |-| and scalar product (-, -, 4
1s a positive real number, F: X — X, while H and u are real valued and
defined on X x X and X, respectively. The operator A4 is the generator of
an analytic semigroup in X. We assume that A4 is self-adjoint and strictly
dissipative (see [20]) and has a dense domain. Operator € in (1.1} is a
fractional power of — A. More precisely we confine our analysis to the case
of € =(—A)" with Be 13, i[.

Equation (1.1} is a generalization of the dynamic programming equation
related to the boundary control of a parabolic equation with Neumann
boundary conditions. We continue with a brief description of this boundary
control problem. Let 2 = R" be a bounded, open domain with smooth
boundary. For a given initial condition x,e L*(£2) and a control process
ve L0, T; L*(0R)) consider the state equation

A\

U= AL+ ) on (0, +x)x 2

X(0, &)= x,(&) on §2 (1.2)
ox ;

ﬁ(f,s’):}'(hé) on (0, +o¢)xaQ,

where /2 R — R is a given function (see [17] and [18] for partial differen-
tial equations with boundary conditions of this kind). Let a continuous
function L: L*(2)x L*({§2)— R and a bounded subset I" of L*(0Q) be
given. Then the control problem is to choose a control y:R* - I to
minimize the functional,

J(xo,;')=£) L(’ ML(x(e, ), Pt ) d, (1.3)

over all measurable controls taking values in /. In (1.3), x(¢,-) is the
solution of (1.2). To establish the connection between this boundary
control problem and Eq. (1.1), we define the value function by

v(xg) = inf S(xy, ) (1.4)

7:R* — I"measurable

If v is differentiable on L2(£2), then it is well known that v satisfies
the dynamic programming equation which is an equation of type (1.1)
with X' = L*(Q). See Section 2 for a rigorous derivation of the dynamic
programming equation.

An important special case is obtained when fis linear and L is quadratic.
In the control literature this type of problem is known as a linear quadratic
boundary control problem. Due to the elegant feedback form of its optimal



BOUNDARY CONTROL PROBLEMS 27

controls, linear quadratic boundary control problems have been studied
extensively. We refer the reader to Lasiecka and Triggiani [16] and to the
forthcoming book by Bensoussan ez al. [5]. Also Hamilton-Jacobi equa-
tions in infinite dimensions have been studied by Barbu and Da Prato
([2, 3]) when the running cost is convex and the state equation is linear.

In this paper we study the boundary control problem (1.2) and (1.3)
with general f and L. In fact, more generally, we study the Hamilton-
Jacobi equation (1.1). We then treat the dynamic programming equation
related to the boundary control problem as a special case of (1.1). The
main purpose of this paper is to obtain a suitable notion of a viscosity
solution which allows us to prove uniqueness and existence results for (1.1).

In finite dimensions viscosity solutions to Hamilton—Jacobi equations
were first defined by Crandall er a/. [8] (also see Crandall, et al. [9]).
Then several infinite dimensional problems were studied by Crandall and
Lions [10], Ishii [15], Soner [22], and Tataru [23]. In all these papers
the operator ¥ was assumed to be bounded. The chief contribution of this
paper is to extend the viscosity theory to equations with unbounded
Hamiltonians.

As we discussed earlier the main difficulty in analyzing (1.1) is to
choose suitable relaxations of the unbounded terms {Ax, Vu(x)> and
H{x, € Vu(x)) appearing in (1.1). These relaxations will then be used to
define the notion of a viscocity subsolution and a supersolution of (1.1).

We treat the linear unbounded term {Ax, Vu(x)) in (1.1) as in Tataru
[23]. We then follow Ishii’s ideas [15] to relax the term H(x, € Vu(x)).
For problems with a bounded ¥, Ishii defines the term H(x, € Vu(x))
roughly as the “limit” of H(y, ¢ Vu(y)). This “limit” is taken on sequences
¥ converging to x and at which H(y, ¥ Vu(y)) is defined. However, due
to the unboundedness of ¥, we have to further smooth the term Vu; see
Section 2.5 below. This smoothing is achieved by integral operators from
an interesting class related to the operator 4. Of course, as one would
expect, it is the existence part of the theory which forces us to introduce
this further approximation.

Our uniqueness proof is related to the one in [10]. We also systemati-
cally apply interpolation inequalities on fractional powers of unbounded
operators.

When the value function of our optimal control problem happens to be
Lipschitz continuous with respect to the negative fractional powers of
(—A), a simpler existence and uniqueness theory is available, as the
semidifferentials of the value function v enjoy a useful spatial regularity
property; i.e.,

fpcD(—A),  Vae]0,1[. (1.5)

Such a regularity property was first obtained in [6] for distributed control
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problems (or equivalently when 4 is bounded). Also for boundary control
problems a similar continuity result holds under suitable assumptions. For
example, Eq. (1.5) holds, when the discount factor 4 in (1.3) is greater than
the Lipschitz norm of the nonlinear term f or when the state equation
contains a distributed control z as well as the boundary control 7; i.e.,

0
(L= AL O+ EN+26 8 on (0, +0)x
x(0, {) = xo(&) on (1.6)

Ox
a(t’é):})(t’ é) on (0, +oC)><@Q

(see [15] and Section 6 below).

The paper is organized as follows. In Section 2 we recall some basic
results on evolution equations, fractional powers, generalized differentials,
and boundary control. In particular, we recall the connection between
problem (1.3) and Eq.(l.1). In Section 3, we define viscosity solutions
of Eq. (1.1) and prove a comparison result for continuous sub and super
solutions. In Section 4 we study the value function v of problem (1.3) and
show that it is a viscosity solution of Eq. (1.1). In the same section we
prove a Lipschitz regularity result for v with respect to the negative
fractional powers of (—A). In Section 5 we outline a simplified version of
our existence and uniqueness results for solutions that have property (1.5).
In Section 6 we use the results of the previous sections to study a control
problem associated with (1.6).

2. NOTATION AND PRELIMINARIES

2.1. Notation

Let X and Y be two Hilbert spaces (or subsets of them). We denote by
C(X; Y) the space of all continuous functions f: X — ¥ and by C!(X; Y) the
space of all continuously Fréchet differentiable functions g: X — Y. We
denote by BUC(X; Y) the set of all functions w: X — Y that are bounded
and uniformly continuous, with norm:

wl .. =sup{iw(x)]y; x€ X}

and by Lip(X, Y) the set of all Lipschitz continuous functions w: X — Y,
with the usual seminorm

[w(x,)—w(x;)ly

, Xy, X, € X; x| ;éxz}.
|xy — X3l x

[W[Lip = sup {
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The set of all continuous linear operators B from X to Y will be denoted
by £(X;Y) with norm [-|. Finally, if X is finite dimensional, L*(X, Y)
stands for the space of all measurable functions y(-): X = Y such that
I7(-)]? is integrable.

When the space Y is the real line R, we suppress it in our notation. So,
for example, C(X; R) is replaced by C(X), and so on. We set

CH(X)={fe C'(X;R): Vfe Lip(X; X)},

and denote by C4'(X) the subspace of C"'(X) which consists of all
functions f satisfying, for every « € [0, 1[ and for every x€ X,
(i) VfeLip(D((—A4)); D((—A4)")),
(i) Vf(x)e D((—A4)*)<=xeD((—A4)).
Finally, C_(X) is the set of all weakly sequentially continuous functions
fX-R

Let A:D(A)cX—> X be a densely defined closed linear operator
satisfying

(i) A=4*
(ii) A is strictly dissipative; i.e., (2.1.2)
Jw >0 such that (4x, x> < —w |x|%, Vxe D(A).
It is well known that (i) and (ii) imply that A4 is a generator of an analytic
semigroup of operators ¢ in X, for > 0.

Moreover, the fractional powers of (—A), (—A)* with xe R, have the
following properties (see [20]).

(i) For 20, (—A)* is a closed unbounded operator on X with a
dense domain D({— A4)*) and

D((-A)°)=X; D{—4)")=D(A);
2 < f= D((—A)*)c D((—A)")
(ii) For 2>0, (—A4) *is a continuous linear operator. Moreover,
(—A4) e L(X; D((—A)%))
In particular, when (—A4)~' is compact, (—4) *: X — X is a compact

operator for every o> 0.
(iii) For every a € [0, 1] there exists a positive constant M, such that

M
(—A) e"x] <=2|x|, VxelX. (2.1.3)

ta
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(iv) Let ae J0, i[. Then for every o > 0 there exists C, > 0 such that

(=AY x| <o |[(—4) 7 x]+C, |x], YxeD((—A4)'?)  (2.1.4)
(—A4) "xP<ox]P+C, [(—4) "x)° VyeX. (2.1.5)

2.2. The State Equation for Boundary Control Problems

Let U be a Hilbert space, I” be a bounded subset of U, and set ||| =
sup{lylesyel ). Let y:R—T7 and consider the following integral
equation,

x(t)ze”’xo-l-f e''" ME(x(s)) ds
Q

-+-(~A)”£:e" DABy(s s, xpe X, (22.1)
where
(i) A satisfies (2.1.2)
(i) Beli s (22.2)
(i) FeLip(X: X).
and

(i) 7:R* — I'is measurable and /"< U is bounded.

(1) BeZ(U;X).

(2.2.3)

Formally, Eq. (2.2.1) can be rewritten in the following way:
X'(t)= Ax(t)+ F(x()}+ (— A4)" By(1)
x(0)=x,.
Equation (2.2.1) is the abstract form of (1.2). We continue by explaining

this fact. Let X = L3(Q), U= L*(é82). Define the Neumann map N: U —» X
by

Adnw=w in 2
Ng=w o 224
p=we=qiw_ in Q. (224)
on

Notice that N: L}(dQ)— H**(2) (the Sobolev space of fractional order).
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We now define an unbounded operator 4 by

a¢
D(A):{qSeHZ(Q):—:O}
cn (2.2.5)
Ax=4x— x.
It is well known that (se [18])
HY(Q) for 0<0<?
D((—A4))= i 226
=4V} {¢EHZG(.Q)2%=O} for 2<O0<1. ( )
on
Therefore, the Neumann map defined in (2.2.4) satisfies
N:U—-D((—-A)> ")
) (2.2.7)
Ne LU, D((—A)"* %))
for every ¢ > 0. Now set
Ny=(—A4)"FN.
Then it is easy to see that
Nye (U, X). (2.2.8)
We now define a nonlinear map F: X —» X by
F(x)(&)=Ff(x(£)) + x(&). (2.2.9)

Then by elementary computations, we can rewrite the state equation (1.2)
in the mild form:

x(ty=e""x,+ f(: e ME(x(s))ds

+(—A)/‘j e VAN y(s)ds, 130, (2.2.10)
0

Clearly the above equation is a special case of (2.2.1) with B=N,.
The following proposition contains well known results on (2.2.1) (see
[13, 14, and 18] for similar results).

PROPOSITION 2.2.2. Let xo€ X and y:R* = ' be measurable. Under
assumptions (2.2.2) and (2.2.3) there exists a unique mild solution x(-; x4, y)
of Eq.(2.2.1}. Moreover, for any small a, ¢ >0 we have:

X5 X0, )€ CR S X) N C[o, +20[; DI(—A) 7)) (22.11)

SRO 11T 1-3
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Finally, we have, for some C >0,

[X(£; X0, 7)—exol < Ct' P, Vx,eX. (2.2.12)

We give the proof of (2.2.12) for the reader’s convenience.

Proof. Set x(¢)=x(1; x4, 7). By (2.2.1) we have
[x(r)—e""xyl < + U el VF(x(s)) dsl (2.2.13.A)
0

+ IJI (—A) e D4By(s) ds). (2.2.13.B)
0

We study every single term of (2.2.13).
{A) Due to the continuity of F(-) and x(-),

<1t sup F{x(s))l

Y () se (0,7]

~l

“ e ME(x(s))ds
(B) Using the boundedness of I, the inequality (2.1.3), and the fact

that 1< pf <! (see assumptions (2.1.1) and (2.2.2).(ii), respectively) we

obtain

]Jﬁ’ (=AY et MBy(s)ds

0

' MB ‘ |
SL (1—s)" IB| I ds

SMy (BT 7,

which concludes the proof of (2.2.12). Q.ED.

2.3. The Control Problem and the Hamilton-Jacobi Equation

We assume that the running cost L(-, -}: X x U — R satisfies

(i) L is continuous and bounded; i.e.,
LeC(XxU); |L(x,y)I<L,, for all (x,7)e XxU

and some constant L, >0 (2.3.1)
(i) |Lx,y)—=LO ) <Lylx—y.Vx,veX, Vyel for
some L,>0.

For 2> 0 and a control function

oy
4

ve.of v:R* — [":¢(-)is measurable },
i i ¢ {



BOUNDARY CONTROL PROBLEMS 33

we take the mild solution x(-; x, y) of the state equation (2.2.1) and the pay
off functional given by

ﬂ&nzi“eimumxymwnm (232)

which we seek to minimize over all ye.o/.
Then, under assumptions (2.3.1), (2.2.2), and (2.2.3), the value function

v(x)= inf J(x, y) (2.3.3)

TE.

satisfies the Dynamic Programming Principle (see [11] and [19]): for
every xoe X and >0

v(x)= inf {Jle SL(x(s;x,7), 7(s)) ds + e ’"v(x(t))}
0

vE.of

Einf J(x, p). (2.3.4)

e

Remark 2.32. Let ¢>0. If y_e.o is an g-optimal control, i.e.;
v(x)>J(x, 7,.)—¢,
then, for every re R* we have

v(x)>J,(x,7,)—¢ (2.3.5)

{see [12, Chap. 1]). Formula (2.3.5) easily follows from the fact that

J,<J VieR".

The Hamilton-Jacobi equation related to problems (2.3.2) and (2.3.3) is
Au(x)+ H(x, (— A4) Vu(x)) — (Ax + F(x), Vu(x)) =0, xeX, (23.6)
where

H(x,p)=sup { —(By,p>—L(x,7})}, Vx,peX (2.3.7)

vel

If the value function v is continuously differentiable on X and Vu is
contained in D((— A)"), then the fact that v is a solution of (2.3.6) on D(A)
is well known and can be proved exactly as in the finite dimensional case
(see for instance [19]).
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Remark 2.3.3. Hypotheses (2.2.3) and (2.3.1) imply that the Hamiltonian
H given by (2.3.7) satisfies

(1) |H(x,p)—H(x,q)| < Hq|p—4ql
(i) [H(x,p)—H(y,p)l <Hg|x—)|

(2.3.8)

for some Hy,>0. To prove comparison results, we only need to assume
(2.3.8) on H. So, in this context, Eq. (2.3.6) is not necessarily related to a
control problem.

2.4. Semidifferentials

Let 2 be an open subset of X and ¥ : 2 — R. For any x,e Q, the super-
and sub-differentials D*yi(xy), D (x,) are defined as follows (see, ¢.g.,

(91

D (xy) = {pe x| lim sup LX) ¥ (x0) = <P ¥ = X go} (2.4.1)
X — X |x—x0|

D W(x,) = {p e x| lim inf 2= ‘/’(Tg) "fl’” X=Xo) o}. (2.4.2)
X xg S (]

The function ¥ is Fréchet differentiable at x,, if and only if D*{/(x,) and
D " yi(x,) are both non-empty. Moreover, in this case,

D*y(xe) =D Y(xo) = { DY(xo)}, (24.3)

where Dy denotes the Fréchet derivative.
The following fact is well known and is used in Section 5.

LemMMa 24.1. Let ae )0, I[, and v: X - R be such that:
[o(x)—v(p) SC(=A) * (x—p) Vx,veX (24.4)
for an appropriate constant C > 0. Then
D*o(x)c D((—A)%), Vae ]0, 1[, (24.5)
and

sup sup |(—4A)ypl<C (2.4.6)
xeX peDty(x)
2.5. A Class of Integral Operators

We introduce a class of convolution operators that is used in the
definition of viscosity solutions.
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Given an unbounded operator A that satisfies (2.1.2), we denote by
M(A) the set of all maps .#: [0, 1] — #(X) such that

(i) |.#x| <|x|, Vxe X,

(1) #,xeD(A), VxelX, Vi>0,

(iii) x> x, (2.5.1)
(iv) A=A,

(V) Ad,=MA.

Examples of operators in M(A) are the following.

(1) Consider a function s: [0, 1] — [0, 1] such that s{t) <t for every
1€ [0, 1] and define:

— del
Ll/, = e"""’x.

(2) For t>0 and xe X, set

6,IA

7 d_efl ! sA __’ ! (t-s)4 — —1 —1
Mx = tfoe xd ‘tj. e xds= A 'x (2.5.2)

0

Then it is easy to show that both .#, and .#, belong to M(A).
The following lemma is useful in the proof of the comparison result.

LEMMA 2.5.1. For every x e X we have the following:
(i) 0<(—~Alx, Bx><{(~AMx, x>

. (2.5.3)
(i} (—Aex, x> < {—AMx, x).

Proof. By the definition of .7,
R . 1 rtpt
(=AM x, M x)= —2j J {—Aex, e x> drds
1" Yoo

and

. | B
(—AMX, x)="5 J‘ J {—Ae*x, x) dr ds.
1" Jo Yo

Hence,
(—AM x, Mxy——AMX, x)

___l ! yA r4
_IZLL<—Ae [e"* —I1x, x) drds. (2.5.4)
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Moreover, for every ye X we have:

(—Ale™ =1}y, v>= —J (A% y, v> dp
0
- -f 146" D412 dp 0. (2.5.5)
0

Now use the above estimate with y =¢“?"x in (2.5.5) to arrive at the first
of (2.5.3). The second inequality is casily proved with similar arguments.
Q.E.D.

3. DEFINITION OF VISCOSITY SOLUTION AND COMPARISON RESULTS

Let us now consider the Hamilton-Jacobi equation:
Au(x)+ H(x, (— A) Vu(x)) — {Ax + F(x), Vu(x)> =0, (3.1)

where 4>0 and H is a Hamiltonian satisfying (2.5.3), but otherwise not
necessarily related to a control problem. Throughout this section we
assume that (2.2.2), (2.2.3), and (2.3.8) hold true.

Let M(A) be the set defined in Subsection 2.5 (formula (2.5.1)). We now
define the viscosity sub- and super-solutions of (3.1). In the following
xeargmax (u—¢) (argmin) is an abbreviation to say that u(x)—é(x)=
max {u(y)— ¢(y), y€ X} (min).

DEerFINITION 3.1. Let ue BUC(X)n C_(X).

(i) wu is a viscosity sub-solution of (3.1) if, for every ¢e C"'(X), we
have

Aulx) — (F(x), Vé(x) )

$(x)—P(e"x) H

+ inf  lim inf
e M(A) 10 t

(x, (=AY ., V¢(e"".\’))} <0
(3.2)

at every x e argmax(u — ¢).

(ii) u is a viscosity super-solution of (3.1) if, for every g€ C'!(X), we
have

Au(x)— {F(x), Vé(x))
$(x) — ple'x)

; + H(x, (-A)" .4, Vaﬁ(e”‘x))} =20

+ sup lim sup{

HeM(A) 110

(33)

at every x e argmin(u — ¢).
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Finally, ue BUC(X)n C (X) is a viscosity solution of (3.1} if it is both
viscosity sub-solution and super-solution of (3.1).

Remark 3.2. In the above definition we have considered two
approximations of the terms containing derivatives of #, namely the ratio

Plx)— gl x)

t s

to approximate the term {Ax, Vé(x)) (see also {23]) and the regularized
term,

H(x, (—A)" #,Vg(e''x)),

to approximate H(x, (—A)* Vg(x)).
Should the maximum (resp., minimum) point x in (3.2) (resp., (3.3))
belong to D(A), the above inequalities would be equivalent to

Aulx) — (F(x), Vg(x) ) — (Ax, Vg(x))
+ inf  liminf {H(x, (—A)" 4 Vg(e''x))} <0

H e MiA) 110
and

,{u(x)_ <F(X), V¢(x)> - <Ax= V¢(X)>
+ sup limsup {H(x, (—A4)" # Vé(e''x))} =0.

H e M(A) 110

The above inequalities could be simplified further, provided that
Vé(x)e D(A) for all xe D(A). In that case we would have

du(x) — {F(x), V(x)> — {Ax, Vd(x)) + H(x, (— 4) Vg(x)) <0
and

Au(x) — {F(x), V(x)> — {Ax, Vo(x) > + H(x, (— A) Vg(x)) 2 0.

We shall use this observation in the proof of Theorem 3.3.

THEOREM 3.3.  Assume that (2.2.2), (2.2.3), and (2.3.8) hold true. Let
u,ve BUC(X)n C(X) be a viscosity sub- and super-solution of the
Hamilton—-Jacobi equation (3.1}, respectively. Then

u(x) < v(x), Vxe X. (3.4)
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Proof. For simplicity we take A=1. For ¢>0, consider the function
¥ .: X x X — R defined as

1
"}’E(,‘C, J‘) = ”(x)—v()') _'j; <( '—A) ! (X —y)’ x—)'> (35)
and, for u> 0, define the test function @, ,: X x X —R:
B, x, 3) = ¥olx ) = 5 Lx+ 217, (3.6)

Observe that our assumptions on A4 and the weak continuity and bounded-
ness of u and v imply that

(1) W, is sequentially weakly lower semicontinuous on X x X,
(2) @, .(x, y)<llull . + ol —ullx? + [¥1°]

Therefore there exists a point (x, ., y,,) € X x X such that

¢c.u(x1:.;u yc.u) = r;lxa§ (‘pﬁ-l" (37)

Set now z, ,=x, ,—¥,, and, for r >0,

NMep

m(r)=sup |u(x)—u(p)l +|v(x)—v(y)l|

lx ysr
It is clear that
m(r) <2(lull . + flof ). (3.8)
We complete the proof in several steps.
Step I. We claim that

1
;<(—A)W|ZI;‘“,ZC'“><m('Z&”,). (39)

Indeed, by (3.7) we have the inequality
¢6,;A(xﬂ.u’ Xt;,u) + ¢L’.u(yt:,y’ ys,u) g 2¢C.u(x6.u’ ,VA;,;‘)' (310)
Then

[u(xﬂ,;l) - U(xr,‘u)] + [u(yn,u) - U(}’s.u)] - u[lxe,yl 2 + lys,u‘ 2]

1
<2u(xs,u)_2v()'n‘y)—‘8’ <(—A)7l zc,;u ZL‘,;A> -_u[]xc,ulz+ I.}YE,}A,Z]'
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Hence
1
z <( —A) ! Zeour :l:.;z> < [u(xﬁ,u) - “()'a.u)] + [U(xl.";l) - l"(}';.;u)]
<m(|z, ) (3.11)
Step II. In this step we prove that

Jim, plix 2 +1y.,121=0 (3.12)

Since ¥, is bounded above, for every 6 >0 there are x;, y;€ X such that
Vx5, vs) = WX, y)— 8, ¥x,veX.
Then the inequality
D, (X0 0 Ve, ) Z Py (X5, Vs)

implies that

U
=[x, 24 1y, 2]

(pr,.u(xe.u » yc,u) = tllr,(xc.;n .Vc.u) - 2

H
P (pn.u(x(% }"a) = '{lr,(xéﬁ .Va') - _2_ [lxd'z + l.“dtz]

> WX, 00 Vo) — O —g [lxa)? + 1320,

Hence,

tim sup & [1x,,2 + 13, 2D <0+ tim S L1x) + 1,71 =5,
"=

u—0r

Step III. We claim that for every r, 2= 0, .# € M(A), we have,

Ye >0, lim sup lim sup A, (u, ) <0, (3.13)
nlo n— x
where
holps 8) S == (15,2 = e, %) + Hop (= A)° M0
nlHs - Y “Veop Mo oM Wy, Ve

n

H
+___Q l(__A)ﬁ ! Q,/[l"(é’lnA - 1) xr:,u!
&

+ uUFO)] |, + TFl g x4 ). (3.14)
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n— x

Indeed, since all operators are bounded and e“x, , “=% x, ,, we have

H Hn—x
LU= V(e =D x, | 5 0.
&

Also, since <1 the interpolation inequality (2.1.4) yields that for every
o >0 there exists C, such that

(=), e x| <o |(—A)? . Hem'x, | +C,|x,l
<G|(_ )l‘7 At |+C |\1‘u|

<O-|(_A)l7 / 1;4|+C¢7 le?J"
< G(<( _A) "/{/"’rl}.}l’ xn;.u>)”2 + Crx let,ul’ (3]5)

where we have used property (v) of the operator .#, (see (2.5.1)) and
inequality (2.5.3.1i). Thus

Hop l(—4)! »'//r,."r"/’x‘ A

SI‘HUJ(<(‘ // Xy ‘zﬁ' »,,;A>)lw2+SH()Crr l'\’t:.‘nl' (3]6)
Moreover,
] 2 14 2 1 14
_7 (Ixu.uI - |0 xl:,ul ): _7 < Xe 1] +() X, ne xt:.;( —e€ xf:,u>
1 ¢
= <'\‘J:.‘[l -+— ()"‘1v\‘f, #H * —J~ A()i“/“'\?l; i ({l“
“rp 2
= <'Ylj,[l’ //f X, u>
+(e"Px, Al e, S, (3.17)

By inequality (2.5.3.1), both terms in the right-hand side of (3.17) are
negative. Hence, for every p >0,

‘:

2
‘E;(Ixi:‘ul Ie 1;A| _<A l/l\f TR tu>' (318)

N

Using (3.16) and (3.18), we obtain for every ¢ >0

M - -~ ;
hn(us 8) < 5 <A*"’[t,,xz,ps xi:,p> + .UH(}U(< —A”fll,,xr,.;n x:;.;x>)l‘2

+.uH0C 'x[ ;4' +H(IF(0)' ’Yl‘;l|+ ’FILIP 'Yé u
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Now, choosing 0 =a,=1/2H,,
hoiw o)<t ca.d Bic—at x_ x>0
" #? 6) ~= 2 < " (nxﬁ.;(’ x(;.u> + 2 (< - i (,,'\(;.;:7 "c,;z))

+.u'H0Crm 1'\‘5:.;1l +.u(|F(0)l 'xl:.ul + lFl Lip lxlz.jl|2)'

Since (u/2)(w —w?) < u for every we R, by (3.12) we easily derive (3.13).
Step 1V. Set

o | -

1
r::,y:;(d_A) l:l:,y: (‘A) : (-’C.;,,A“}';;,ﬂ) (319)

and

h(u, ¢} =lim sup h,(u, &)

[ di 4

Then we claim that for every p >0 there exists ¢, “—> 0, and .# € M(A)
such that

1
u(xc.u) - <F( xi:.u )’ rll‘[l> + ; <xr,‘;4 » xf:,;t - ,"n.y)

+ lim H(x, ., (=AY A, r. )<p+hye) (3.20)

n— x

Indeed, let

1
¢(x) = v(yii.ll) +5— <( _A ) ! (x _y»:,;t )’ X —ys:.;‘>
&

+ LU+ 13, (3:21)
or, equivalently,
P(x)=u(x) — @, (x, y,,)- (3.22)
Hence
(u—@)x,. )= mjlx(u —¢y=max®, (-, y.,) (3.23)
0 X

Then from Definition 3.1 we have that Vp >0, 31,10, and 3.4 € M(A4),
such that

u(x;;_“) - <F('\’i:.u )s V¢(x1;.u)>

_ thAd .
+ ‘lm {¢(xt:.u) ¢(€ -\l}.ll) + H(x&‘” (—A)ﬁ v’”r" V¢(€'"AX‘:’“))} gp.

(3.24)

”
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Recalling the definition of r,,, we have
1
V¢(€IAXE.;¢) =Feu + ; (— A) - (e’Axlz,u - xf:,u) + .ue'Axi;,u (325)

and
V¢(x1:.;1) = r.t:.;t + iuxﬁ_;z' (326)
So,

¢(x1:. 1t ) - ¢(e’Axl:./l )
f

1 : ‘
=5£; [<( —A) ! xu,;n x;:‘;x> - <(_A) ' erAxL,;u € Axn./t>]

! ! I tA
+E (_A) 7 (() _1) 'r)i.[l7,v£,[l

+ (LXWJZ~¢€”X&“V)~ (3.27)

ad
2t
Observe that

: 1 - - t [
lllln(}z—{:—[[<(_A) ]xﬂ.‘u”tli,[l>~<(_‘4) leAx::.;MeAxc,u>]

 (I—e")

=lim — <xx:.u + elex:,;n ( —A ) __t—— xn:.u>

1
= E <xa.;n xt:.u>

and
o1 et—71 1
lllf{)l ; <( - A ) ! t xt:.u ’ ,Vc‘,.;4> = - E <x1:.u * yr,,u >
Therefore
¢(x1:,;l ) - ¢(e,AX&‘ u )
t

l 2 2
=E <xa:,;n xn.;z '_yf:.u> +§; (lxa,u(‘ - le’Axﬁ.ul-) + (1)0(1), (3‘28)
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where lim, _ , wy(t)=0. Moreover, by (3.25) and Assumption (3.2.v), for
every .# € M(4),

,H(xi:.;l’ (_A)ﬂ'//' V¢(€1Ax6,u)) H(rr FiNd ( A)ﬂ"lllrl:.;l)’

1
H() ( -4 )ﬂ L/[l [uerqurz.u +z ( - A) ' (e’A-\’;:_;t - xl:,;x)]i

H
S'-G-Ol(—A)ﬂ l‘/[r(e’A__l)xu,ul+H()lu](_ )ﬁ //elﬁx.‘ ;A|

Therefore, for every .# € M(A),

H(x, . (= A" #,V¢(e"'x, ) = H(x, ., (=) M, ,)

(:.;1'

H
——£—°|(—A)” Ld(et—T1)x
— Hop [(— A) Mex, . (3.29)

Finally, we easily estimate the tetm containing F in (3.24) by (3.26) and the
Lipschitz continuity of F:

—<<F 4;1 V¢(\l ;1 >
<F(\1 u .‘[l> .u(lF(O)l 1\1;1|+|F|L1p\ 1;('2) (330)

Using (3.28), (3.29), (3.30) into (3.24) (for r=1,), and the definition of
h,(u, €), we conclude that

l(( i[l <F(\I “’ 4;(>+ <rl ;n'ru—}vn.u>

+ lim { H(xf,.;n ( -4 )ﬁ "/[I,,rc_u) + (D[](t) - hn(“* 8)} < 0!
which directly implies claim (3.20).
Step V. For s,—0 and .4 € M(A), define the function k,(y, ¢) in a
way similar to the definition of A, (exchanging x,_, by y, ) and set

k(u, €) “ lim sup k,(u, €).

il &

Then, using the same arguments of Steps 111 and IV, we conclude that

lim sup k(p, €) €0, (3.31)

110
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and for every p >0 there exists s, -~ 0 and .4 € M(A) such that

U 1;1 <F !/A l;t>+ <l!;l"lﬂ—.vﬂ.“>
+ lim H(y,,, (=AY 4 r, )= —p—kp,e). (3.32)

Step VI. Conclusion. Fix p >0 and &> 0. Subtract (3.32) from (3.20)
to obtain

|2,

ll('rli,u) - ln(.vl,,[l) +

1
() <<F(~\‘ﬁ.,,)*F(}'.-,.,Js;(—A) ’Zu,,‘>

(I + him {H(y,,, (=AY A r )= Hx A=A #r )}
+2p+ hlp, &)+ k(p, &) (3.33)

Next, we estimate the first two terms appearing in the right-hand side of
(3.33).

(I) First recall the elementary fact that, given a, b>0, for every
>0 we have

L1,
2ab < oa”+ - b (3.34)
g

Since Fe Lip(X; X), we estimate
1 1
F( f“) F(ll;l) (_A) :4:4:

lFlL.pl-),,H (—4) 'z,

e

1 l
S 1 Flup | 5o 12,7 +2 —A) 'z
5 Flup [2 lFlL.p' wnl T2 [(=A) Tz, ]

1 9 D ',1
+Z;l:,.,,,l‘+|FlLi,,|(~A) *|—<(~ ) e so. (3.35)

~

(I1) Using the definition of r
(2.3.8) we obtain

n (3.19) and the assumptions in

Eopt 1
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H(y;:,;n ( —A )ﬁ i, st ;1) H(-\‘:,.;n ( —A )ﬂ *'//lru.u)

1
SH();I(—A)" AN

l:.u[
+H0 ]:»;/ll (] +— l(—A)/i : // oy “l> (336)

We now estimate the right-hand side of (3.36). First by the properties of
M(A) we have

lim Ho—l —A) N, — 8z, | =0. (3.37)

£op
5,1 —=0

Moreover,
! #od
Hlll:t,.u‘ l+—l(_A) ‘//l:u.u‘
&

1
<Hylz '+H(>;|:;,‘“{ ‘(_A)” N A

Ilu'

(3.38)

oot
Observe that, by (3.34) and (2.1.5), for any ¢ >0 there exists C, >0
satisfying

o =AY 'z <oz, P+ C,(=A) Pz 02,0 (339)
Use (3.39) with 0 =0, = 1/4H, to estimate the last term in (3.38)

1
H()I:A.JII;“—‘A)‘; l:L.p]

Lo 1
\‘ 4I| + - Hleal<( ‘:»:.;Hzt..u>' (340)

This concludes our estimate of the second term in (3.33). In sum, setting
r1=¢, and s=s,, and letting » go to +ac by (3.36)-(3.40), we get

llm {H(_vuln (_'A){"‘;,,rruu)‘ H('\‘r,;u (‘A)/f //{ r,. ;A)

1+%H(,C_'m<(—A) Yoo, (3.41)

i TR R Y]

Iz, 07
< 4’ +H, |z

Lo

We can now substitute (3.35) and (3.41) into (3.33) to obtain
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-

|z¢:.u[

u(xn.u) - U(.V;:.u) + T

1
< 2.0 + h(’*" 8) + k(ﬂ, 8} +‘; C2<:.‘:.u’ (_A);‘ Z&.u> + H[] !:t:,u|$ (342)

where we have set C,=(H,C, +|FI],, [(—4) ).

Now we recall that, by (3.14), A(u,e)+k(u,e) is bounded in a
neighbourhood of 0. Moreover, by (3.9) and (3.8), {z,,,(—A4) - Zo,.0 18
bounded, and « and v are bounded by hypothesis. Then, inequality (3.42)
yields

E
“eop

2¢

S]_Il] I:l:,u|+C3 (343)
for some C;>0, for every sufficiently small x4 and ¢. Clearly this implies
that

'zr,,ul2

——<C, (3.44)
2e

for some C,> 0. Substitute (3.44) in (3.42) and use (3.9) to conclude that
u(xc.;t) - U(.Vl:.[l)
<2p+H, \/2C4£ +4C,m(\/2C,e)+ h(p, e} + k(. e).  (345)
Since (x,,, y.,) Is a maximum point for @, ,, for every xe X we have

u(x) —v(x)—plx|?
= ¢1:..u(x’ .\') s ¢1:,,u(xc.;u .‘yi:.ﬂ) < u(x::,u) - U(y;;,u)

<2p+ Ho \J2C,e +4C,m(/2C ) + h(p, &) + ki, 8).  (3.46)
Let 4 — 0 in (3.46) to obtain
u(x)—uv(x)<2p+ H, \/2C4£+4C2m(\/ 2C,¢) ¥Yxe X

Since p and ¢ are arbitrary, (3.5) follows from the above inequality. Q.E.D.

The following uniqueness result is a straightforward consequence of the
above comparison theorem.

COROLLARY 3.4. Assume that (3.2) holds true. Then Eq.(3.1) has at
most one viscosity solution in the sense of Definition 3.1.
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Remark 3.5. By the proof of Theorem 3.3 it follows that the
comparison result (3.5) still holds true if we take functions ¢e C'(X)
in Definition 3.1. Indeed, the test function appearing in the proof of
Theorem 3.3 clearly belongs to C4'(X). We use this fact in Sections 5
and 6.

4. PROPERTIES OF THE VALUE FUNCTION v AND EXISTENCE RESULTS

In this section we show that the value function of problem (2.3.2) is the
only viscosity solution of the Hamilton-Jacobi equation,

Au(x)+ H(x, (— A)? Vu(x)) — {Ax + F(x), Vu(x)> =0, (4.1)

where the Hamiltonian H is as in (2.5.2). Since the Hamiltonian H defined
in (2.3.7) satisfies hypotheses of Theorem 3.3 (cf. Remark 2.3.3), the unique-
ness of viscosity solutions to (4.1) follows from the results of the previous
section. In this section we prove that, if the operator (—A4) ' is compact,
then the value function ve BUC(X)n C(X) and is a viscosity solution of
(4.1). Throughout this section' we assume that (2.2.2), (2.2.3), and (2.3.1)
hold true and take 4> 0.
We first study the regularity properties of the value function v.

PROPOSITION 4.1.  The value function v is Holder continuous on X with
respect to the norm of (—A)~" for every 0¢ [0, 1[. More precisely, for any
6 <A/|F|Lp and 0 <1 we have

lo(x) = v(3)| € Cop (—A) P (x—p)|° Vx,yeX, VOe[O, 1[. (4.3)
Therefore, if operator A has a compact resolvent, then v is weakly
sequentially continuous.

Proof. We adapt some ideas of [6] and [15]. Let x, y€ X and y e .o/ be
given. Set x(¢):=x(z; x, y) and yp(1) :=x(t; 5, y). Then by (2.1.3) we have,
for every te [0, T,

()= 20 < (= 9+ |l || 1x() = p(o)] ds

M ‘
S U= A) () 4 Flu [ 1x(s) = 3(s)] ds. (44)

Now set n(1)=[{ |x(s)—y(s)l ds and integrate the above inequality to
obtain

M [
M <75 (=) " (=)l "+ Flup | n(s) ds.
- V]

580 117 1-4
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Then, by Gronwall’'s inequality we can estimate n(r). Substituting this
estimate into (4.4) yields

C .
[x(1) = p(0)| < [T:+ Cyetflue’y! “] (=4)"" (x =y, (4.5)
for some Cq, C;>0. For every o€ 10, A/|F| [, o<1 (4.5) implies that
a Cg a1 -0 a | F|Lip? -0
(x(r) = y(1)|” <27 Tt Cot't =% (= A) 7% (x = y)|7. (4.6)
We also have

L(x(1), 7)) — LAy (), I <L Y 7 1 L(x(e), 7) — L{y(0), y)I°
<Lix(r)—y()l°, (4.7)

where L= (2L, )" ° LZ. Choose T > 0 satisfying
T =) -y (48)
By the Optimality Principle, Proposition 2.3.1, there exists y € &/ such that
o> [ e LG A i e AT = (= 4) * (=D (49)

Again, the principle of optimality, formulas (4.7) and (4.9), the fact that
lo(x)] < L. for every xe X, and the choice of T in (4.8) yield

v(x) - U(_v)<f0 e ML), (1)) = L), y(1)] e
+e TLo(x(T)) — o p(THT+ (= A) " (x= )7
sL‘fTe**'|x(r)—y(:)|"dz+2|(—A)’“(x—.v)l”- (4.10)
Q

Finally, by (4.6) and (4.10) we obtain

lo(x) = oI <2 1(=A4) * (x=p)I°

T
+LA2(IJ [Cg 9,06 + C;’f“ 010, (o | FlLip - /Llr:l dt
0

x[(—=A4)"" (x=p)I°.

Since 6 < A/|F|,,,, (4.3) follows from the above inequality. Q.ED.
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Motivated by Proposition 4.1 in the remainder of this paper we assume
that

(—A4) ':X— Xisacompact operator. (4.11)

This assumption, together with Proposition 4.1, guarantees the weak
continuity of the value function v. The main result of this section is the
following.

THEOREM 4.4.  Assume that (2.2.2), (2.2.3), (2.3.1), and (4.11) hold true,
and let 2> 0. Then the value function v is a viscosity solution of (4.1), in the
sense of Definition 3.1.

Proof. Take A=1.

Step 1. In this step we show that the value function is a subsolution
of (4.1). Fix e X, 7e[I. Consider a constant control function y(t)=7¥ for
every ¢ = 0. Set ¥(¢) = x(r; X; ). Then by the Principle of Optimality (2.3.4)
we have

b(F) < jo ¢ “L(Z(s), 7) ds + e~ v(%(1)),

which implies that

v(X) — L(%, ;T)+M1L)_)

!
slj' e L(E(s), 7) ds — L(%. 7) + 0(%) — = u(3(1))
tJo !
E w220, (4.12)

due to the continuity of x(-), v(-), and L(-, ). Now suppose that, for some
peC(X),

v(X) — ¢(X) = max(v— @) = v(X()) — $(%(1)). (4.13)
Then, for every 1> 0, (4.12) and (4.13) yield
(%) — L(X, 7)+w<w2(1)’—”“; 0. (4.14)

Moreover

P(X) — p(x(1)) _ P(X) — g(e''%) + dle'x) — P(X(1))
t t t '

(4.15)
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Since ¢ is differentiable,

gle'x) — $(x(1))
!

1
7 (VB(E(1)), e''x — x(1))

1

(Vgle'x), (— A) MA,By>

<V¢(e”‘r) jo el ""F(\f(s))ds>

1
- (V(&(1)) — V(e %), X(1) ~ €D, (4.16)

whcre Ey=At) e+ (1 —Ai(n) %(z) for some A:R*—1]0,1[, and
=(1/1) _[’ e xds as in (2.6.2).
From formula (2.2.11), we have

| %(1) —e"x|? |, _o-

< |V¢|Lip p — 0,

1
‘7 (VB(&(1)) — V(e %), X(t) —e''%)

uniformly with respect to 7e I. Moreover,
(Ve 1 [ et FLs(s)) ds ) = CTBLR). P>
_ <V¢(e""i) _V4(®), ; [ el VE((s)) ds>
0

# (Vo5 [ e LR — FO L de )

del'

+ (V§(R), (A~ 1) F(R)> = I, + L+ I,

where
LIS s (RS Vel e
LIS IV sup IFE) -~ F(5)
11 < IVO(E) 1A, F(2) — FIS)
Therefore,
(Vaterta, [ e psto ds )

= (VH(%), F(%)) + w3(1) =250, (4.17)
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uniformly with respect to ye . By (4.14)-(4.17) we thus obtain

o(®) — (VH(E), FIE)) +"—59‘-’1?(—"——"3— L(Z 7)
— (=AY A, V(e %), BF> S wy(t) ~=25 0 (4.18)

where o,(-) is independent of j € I'. In the above estimate we have used the
equality

(=AY M, Vp(e%), Bf Y = (Ve %), (— A)* A B7>.

So, taking the supremum over all ye I" in (4.18) we conclude that
$(X) — le"X)
t
+ H(F, (— ) A, Vgl 7)) < w5(1) ——25 0. (4.19)

0(X) + {Vg(x), A(3)) +

Letting 7|0 (4.19) yields
v(X)+ (Vé(x), F(x))

+ lim sup {w+ H(%, (—A) A4, V¢(e"“.€))} <0,

110

which implies that
(%) + (V@(¥), F(X))

+ inf  limsup
e M(A) 110

AN tAZ
{ﬂﬂﬁﬂ&& H(%, (—4)' A, V¢(e"“f)>} <0.

Q.ED.

Step 1I. In this step we now prove that the value function is a super-
solution of (4.1). Let ¢ C*'(X) and e X be a (local) minimum point for
v — ¢. Then, for every >0, we have

o(¥) = v(E()) < P(¥) — p(3(1)). (4.20)

Recall that by the Bellmann Optimality Principle (2.3.4) we have

e

v(x)= inf {[’e SLAx(s), y(s)) ds+e ’v(f(t))}. (4.21)
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Therefore, (4.20) and (4.21) yield

sup {—1j'e SL(R(s), y(s))d.erLl—i—)v(i(t))-i-M}20.

e 10 { !
(4.22)

Arguing as in (4.12), we obtain
[ e gt s+ o)
tJo t
- —”’ L(E, 7(5)) ds + 0(%) + w(1), (4.23)
tJo

where lim, , ,.w4(t) =0 uniformly with respect to y(-)e.«/. Moreover, by
the same reasoning used in Step I (see (4.15), (4.16), and (4.17)),

$(X) — S(x(1))
t

_ R = dle )| e 5) — (x(1)

t 14

_ (8 — de )
14

— (V(x), F(x))

+ <V¢(e"“.{"), ; (—A) L’ el 1By(s) ds> +w(t), (4.24)

where lim, 4. @,(#)=0 uniformly with respect to y(-)e.«/. Now, from
(4.22), (4.23), and (4.24) it follows that

HE) — (V(E), )y + P 0D {—H L% 7(s)) ds
0

t H e
— <V¢(e"‘,€), % (—A4)F Jl e~ 1 By(s) ds>} > —wyl(t), (4.25)
(4]

where lim, _ ;- w(¢) =0 uniformly with respect to y(-)e «/.
Now observe that

sup {%Jr[—L(.\‘, P(s)) — <V¢(e”’)?), (—A)' e "'B}'(s)>:| ds}
0

yl-)e.of

VAN

lfr sup {—L(.‘E, )= {((=A) e H1Vp(e™ %), By)} ds

0 ye.w

=H HUE (— )" e 14 V(') ds. (4.26)
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Then, by (4.26) and (4.25), we have

$(%) — g(e"'x)

o(X) — (Vg(x), F(X)) ;

+]?j' H(x, (—A)/f e Vg(e %)) ds = wyl1),
0

and so, for every ¢ >0, there exists s, € ]0, 1] such that

o) — (Vo). )y 2 =HES)
+H(R, (— A) 4 V(e 7)) ds = wqt).
Let 1|0 to obtain
o(%) = CV(E), ()

+lim inf {——-——-——M’% )= ¢(e”%)
110 t

+ H(Z, (—A) e Vg(ex)) a’s} >0.
As seen in Section 2.6, the family of operators ¢, re ]0, 1] belongs to
M(A), and taking the supremum in M(A) we conclude that
v(X) — Vg(X), F(x))
!

+ sup liminf
HeM) 110

+ H(X, (— A)* M, V(') ds} >0.

QED.

5. SOLUTION OF THE HAMILTON--JACOBI EQUATION IN THE LIPSCHITZ CASE

We give in this section a simplified version of the existence and unique-
ness theory for viscosity solutions of our Hamilton-Jacobi equation:

Au(x)+ H(x, (—A) Vu(x)) — (Ax + F(x), Vu(x)> =0 (5.1)

Throughout this section we assume (2.2.2), (2.2.3), (2.3.1), (4.11), and
the following:

FlLp <A (5.2)
Under Hypothesis 5.2 we have (see Proposition 4.1)

Yae [0, 1[, 3C,>0 st

(5.3)
l(x) =N <G l(—=4) "(x=»)] Vx,yeX
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This fact implies that the semidifferentials of v are contained in the domain
of the fractional powers of (—A4) (see Lemma 2.4.1):

VxeX, Vae[0 1], D*u(x) = D{{(—A)). (5.4)

In view of (5.3) and (5.4) we give the following definition.
DerinTioN 5.1, Consider a function ue BUC(X)n C,(X) such that
[u(x)—u(p) S C(~4) P(x=y), Vx,yeX, (5.5)

for some constant C> 0. Then, we say that « is a viscosity solution of the
Hamilton-Jacobi equation (5.1) in X if V¢ e C,'(X) we have

(i) Subsolution. If ¥ — ¢ has a local maximum point at x,e X, then

u(xo) + H(xg, (—A4)" Vg(x,)) — (Flxo), Vé(xo) )

+ lim inf
tl0

Mg& (3:6)

(i1} Supersolution. If u — ¢ has a local minimum point at x,€ X, then
u(xo) + H(xo, (— A ) Vé(x,))

SN At
— (F(xo), Vé(x)) + lim sup M—M; 0. (57
t]0

Remark 5.2. (A) As one can easily see, if x, is a local maximum
(minimum) point of u — ¢, then by (5.5) and Lemma 2.4.1 it follows that
Vé(xo) € D u(xg) « D((—A4)F)

so the term (— A)” Vé(x,) in (5.6) and (5.7) is well defined.

(B) If, in addition we have that D*u(x,)e D((—A)"?), then V(x,),
xo€ D({—A)"?) so that

tim inf 2 =R _ B0 — Hlexo)
1o ! 110 t

= {( —A)'"7? Xo>5 (‘A)l“z Vé(xy)>

and in such case the Definition 5.1 could be simplified further replacing the
lim inf and lim sup in (5.6) and (5.7) by {(—A4)"% x,, (—A4)"2 V(x,) ).
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(C) By formula (5.5} it follows that
Ju(x) = u(p)| S C [(—=A4) | |x =) Vx,yeX (5.8)

so that the function u e Lip(X; X).

The main result of this section is the following:

THEOREM 5.3. Assume (22.2), (2.2.3), (2.3.1), (411), and (5.2). Then
the value functionv is the only viscosity solution of (5.1) in the sense of
Definition 5.1.

Proof. We divide the proof into two main steps proving, separately,
existence and uniqueness of a solution of (5.1).

Step 1: Existence. Assume (2.2.2), (2.2.3), (2.3.1), (4.11), and (5.2).
Then the value function v is a viscosity solution of (5.1}, in the sense of
Defintion 5.1.

We prove the sub-solution condition. The other one follows in the same
way. By Theorem 4.4 the value function v satisfies Eq. (5.1) in the sense of
Definition 3.1. Then by Definition 3.1 and the fact that C%'(X)c C"'(X),
we easily get that, given ¢e C.'(X), we have

Av(x)~ {F(x), Vé(x))
$(x)— p(e"x)

+ inf lim inf{ .

e M(A) 110

+ Hix, (—A) 4, V(b(e”'x))} <0

at every x € argmax(u — ¢).

Let g€ CL'(X) and x, € argmax(u — ¢). By Remark 5.2(A) and property
(5.3) we have that Vé(x,)e D((—A)") and therefore, x,e D((—A)"), by
definition of C'(X). It follows that

x5 x,  inD((—A4)")
which implies, still by definition of C;'(X), that
V(e x,) 5 Vhlxo)  in D((—4)P).

Finally, by the property of the class M(4) and by the continuity of the
function H(x,, -), we obtain that for every .#,€ M(A) we have

lim H(xy, (= A)" .4, V(e xo)) = H(x,, (- 4) Vi(xy)),  (5.10)

1[O

and putting (5.10) into (59) we get that « satifies the sub-solution
condition of Definition 5.1.
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Step 2: Uniqueness. Assume that (2.2.2), (2.2.3), (2.3.1), (4.11), and
(5.2) hold true. Let w,ve BUC(X)n C,(X) be, respectively, a viscosity
sub-solution and a super-solution of (5.1) in the sense of Definition 5.1,
satisfying property {5.5). Then, for every xe X we have

u(x)<o(x).

The uniqueness result easy follows from the above statement.

Let u be sub-solution of (5.1) in the sense of Definition 5.1 and satisfying
(54). Then consider a function Y e C,'(X) and x,eargmax(u — ¢). By
formula (5.11) and Definition 5.1 we obtain that

Au(x)— {F(x), Vé(x)>

+ inf liminf
e MAY  1)0

{—————-——W") “:’5(""4") + H(x, (—A4) 4, V¢(e"“x))}

= Ju(x) = CF(x), VH(x)) + limlé’nfw

+ H(x, (—A)"V(x)) <0, (5.11)

which implies that u is also a sub-solution of (5.1} in the sense of
Definition 3.1, when the test functions belong to C4'(X). In a similar way
we can see that v is a supersolution of (5.1) as in Definition 3.1 when the
test functions belong to C;'. Now, to conclude, recall that by Remark 3.5
the result of Theorem 3.3 remains true when the class of test functions is
restricted to C % Q.ED.

6. A CONTROL PROBLEM WITH BOUNDARY AND DISTRIBUTED CONTROL

Now we modify the control problem (2.2.1)-(2.3.3) by adding a
distributed control z(-): R* — X, in the state equation (see also [15] for
the study of this problem). Formally the state equation becomes

Xy =Ax()+ F(x())+z2(0) + (— A)" By(1)
x(0)=x,

(6.1)

that can be written in mild form as

x(t)=e""x,+ f’ e VA[F(x(s))+z(s)] ds

+(-—‘4)/‘j0 el VMBu(syds,  x,€X. (6.2)
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The mild solution x(; x,, », z) of (6.2) exists and is unique as one can
easily see by a simple modification of Proposition 2.2.2.

Denoting by 2 the space of measurable controls z: R* — X, we study
the problem of minimizing the functional

Jx. 7, )=j e HLLOx(), 7)) + 4 12(1)]2] d (6.3)

over all ye.o/, ze Z. The value function of this problem is

vo(x)= infl J(x,7,2) (6.4)

yEN T

and the Hamilton-Jacobi equation associated to this control problem is
precisely

Au(x) + H(x, (— A Vu(x)) + 1 (Vu(x)|2 = (Ax + F(x), Vu(x)) =0, (6.5)
where H is given by (2.5.2).

PROPOSITION 6.1. Under assumptions (2.2.2), (2.2.3), and (2.3.1), the.
value function vy is Lipschitz continuous with respect to the norm induced on
X by (—A)"* for ae [0, 3], ie,

Vae [0, i[, 3C,>0,
St rg(xX)—vo(¥) S C, [(—A4) *(x—y} vx,yeX. (6.6)

Proof. Take i=1. Let ae]0,i[, and x,, x,€X. Without loss of
generality we can assume that

(=4} > (x,—x)l <ol (6.7)
Let yoe.9/, zo€ 2 be such that, setting xo(?) := x(1; Xg; 7o, Z9) W€ have

volxp) +1(—=A) 7 (x; = xo)l > J(x4, 70, Z0)

> [ e TLXUL ol + 3z de

YO

+e Tog(xo(T)), (6.8)

for every T>0 (see Remark 2.3.2). Set

50 £ Zolt) + Flxgln)) — Flx(1) +(’M(-\'1 — Xo)) (6.9)

so that

def
) =

X (1) = X155, ve. 2) = xplt) + e (x) — xg) (6.10)
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Then

-
Uo(-\'x)gj‘() € '[L(,\”(t),‘}’()(t))+%|:,(1)|2]dt+(’ TU()(X(T))- (6.11)

Subtract (6.8) from (6.11) to obtain
Uo{x ) —vp(xy)
<| e {[L(r (1) 7o(1) — LExolt . 76N ]+ 3T1 (D1 = 2ol ) ]}
+e "Toolx(T))—volxo(THT+ (= A) ™ (x;—x,)]

=l +L+1L+(~A4) *(x,— X))l (6.12)

Now we estimate every single term. For the first one we easily obtain, for
every 7>0,

lmsLUjo e ' 1xy(1) — xo(0)] dr

.

<L e e (x, = xo)l dt
0

” I

‘[1 drl(—A) *(x,— x|

sL(,M,L ’
=K, I[(=A4) "(x;—xo)l, (6.13)

where K, , < +oc for a€ [0, [. As for the second term,

L=t e N =m0+ 2 d
<i e 0 =z ) + 20 di
0
<%f0 ¢ "|Flyp le(xi = xo)l e [zl +2(0)]1dr (6.14)

Now we can apply the Holder inequality to obtain

uz|<%:F|up(v[) e ety = o)l dr) (j e ’I:[,(t)+:1(r)|2dt> .

(6.15)
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The first term can be estimated as follows

T 1/2
(fo e "e"(x; —x4)? dt)

4o -t 172
<)(=A) *(.n—xo)lM,(jO %;dr)

=Ky, [(=4) *(x,—xo)l, (6.16)

where

—¢

+% o 12
K, , =M, (J. ~r—27dt) < 4o for «€[O0,i[.
O

At this point we estimate the term |zy(f) + z,(¢)|° By (6.4) we have that
el <L, , which implies, by formula (6.8), that

L, 1= 4) (= o)

Then, using the expression of z,(¢) in (6.9), it follows that

Izo(t) + 2D S [2 |20} + 1 Flip 1€ (X — X0)1]°
<4 zo(n)P +2 lF|iip le'(x) — xy)I?
<S8L, +81(—4) *(x;—xoll

M? )
+2 IFIZUP—,Z—:I(*A) Xy —x0)l"

Now, recalling that [(—A4) > (x, —x,)| < v, <L,
1.2

, >
<f0 e "zolt) + z,(0)? dt)

-1t

+% p
<I6L, +2(Flu ML, [ Sodi
0 !
=Ky, <+x for ae [0, . (6.17)

By (6.16) and (6.17) into (6.15) we obtain, for every T> 0,
Wol <5 IF)Lp Ko Ka o 1= A) 7 (x, — xp)l. (6.18)
Finally, for every 7> 0,

I <e  2\0), <2 'L, . (6.19)
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By (6.13), (6.18), and (6.19) in (6.12) we conclude that, for every T'>0 and
xe [0, 5[,

vix) —v{xg) < [K ,+ % | F Lip K, K JW(—=A4) *(x;,—xy)l +2Le
which gives the claim by letting 7— +oc. Q.ED.

Remark 6.2. The main difference between Propositions 4.1 and 6.1 is
the fact that we obtain the Lipschitz continuity of the value function
without assuming the strong condition |F|;, < 4 to obtain the claim. This
gain in regularity is due to the presence of the distributed control z in
system (6.1).

Now we can repeat the theory of viscosity solutions for Egq. (6.5).
The following theorem can be easily proved with the same method as
Theorem 5.3.

THEOREM 6.3.  Assume (2.2.2), (2.2.3), (2.3.1), and (4.11). Then the value
function vy is the only viscosity solution of (6.5), in the sense of
Definition 5.1,

Theorem 6.3 is a corollary of Theorem 5.3. One just has to pay attention
to the fact that the Hamiltonian term H(x, p)+ 1| p|? of Eq. (6.5) does not
satisfy a Lipschitz estimate with respect to p as required by condition (3.2)
to obtain uniqueness. On the other hand, this difficulty can be easily over-
come since the behaviour of the Hamiltonian at infinity is not essential
when dealing with Lipschitz continuous solutions.
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