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CONDITIONAL DAVIS PRICING

KASPER LARSEN, HALIL METE SONER, AND GORDAN ŽITKOVIĆ

Abstract. We study the set of marginal utility-based prices of a fi-
nancial derivative in the case where the investor has a non-replicable
random endowment. We provide an example showing that even in the
simplest of settings - such as Samuelson’s geometric Brownian motion
model - the interval of marginal utility-based prices can be a non-trivial
strict subinterval of the set of all no-arbitrage prices. This is in stark
contrast to the case with a replicable endowment where non- uniqueness
is exceptional. We provide formulas for the end points for these prices
and illustrate the theory with several examples.

August 17, 2018

1. Introduction

We consider an investor in a frictionless but incomplete financial market.
The price dynamics are modeled by a locally bounded semimartingale S.
The investor will receive an endowment B at a future time T > 0 and would
like to price a derivative with payoff ϕ at time T . To obtain the set of possible
prices for the payoff ϕ, we use the marginal utility-based pricing approach
of Mark Davis in [8]. With the investor’s utility function U : (0,∞) → R

given, we start by defining the primal value function v(·;B) “conditioned”
on the presence of the endowment B ∈ L∞

++ := ∪a>0(a+L∞
+ ). Its domain is

a set of random variables ϕ interpreted as future derivative payments, and
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its value is

v(ϕ;B) := sup
H

E[U(ϕ+B +

∫ T

0
HudSu)], ϕ ∈ L∞,(1.1)

whereH ranges over a set of admissible integrands which is defined in Section
2 below. Then, given a fixed derivative with payoff ϕ, we call a constant
p ∈ R a conditional Davis price of ϕ (conditional on the endowment B), if
p satisfies the following inequality

v
(

ε(ϕ− p);B
)

≤ v(0;B), ∀ε ∈ R.(1.2)

The mathematical details are given in Definition 3.4 below.

The conditional Davis pricing concept above can also be seen as a varia-
tion of the classical case where the utility function is no longer deterministic.
We could consider the random endowment B a part of the preference struc-
ture of the agent, i.e., think of x 7→ U(x + B(ω)) as a stochastic utility
function and view E[U(ϕ+B)] as the expected utility of the position ϕ.

The set of spanned endowments B provides an interesting special case.

Indeed, if B ∈ L∞
++ satisfies B = x +

∫ T
0 HudSu for some initial value

x and an admissible H, then x is unique and the primal utility function
satisfies v(ϕ;B) = v(ϕ;x). In this case, the conditional Davis price is exactly
the marginal utility-based price of the payoff ϕ given the (constant) initial
wealth x > 0 defined in Definition 3.1 in [16]. This paper’s main goal
is to extend the theory developed for spanned endowments to the case of
unspanned endowments, which is one of the main problems one faces in
many incomplete-market-equilibrium frameworks.

An alternate approach is to consider the endowment B as the payoff of
a financial derivative as well. This perspective requires us to price multiple
derivatives simultaneously and was considered in [15, 23]. Namely, let ξ be
the d-dimensional payoff of d derivatives and fix an amount q0 ∈ Rd. Then,
in Remark 1 of [15], p0 ∈ Rd is called the marginal utility-based price of ξ
given q0 if p0 satisfies,

v(q · (ξ − p0); q0 · ξ) ≤ v(0; q0 · ξ), ∀q ∈ Rd.

So alternatively, one may define conditional Davis prices of ϕ as the second
component of the two-dimensional marginal utility-based prices of the pair
ξ := (B,ϕ) with q0 := (1, 0). Indeed, we give the precise definition in Section
4 and in Section 4.1 we show that these two notions agree.

Apart from using the same definition, previous studies do not cover the
case of conditional Davis prices with an unspanned endowment B. In par-
ticular, [16] study the one dimensional problem with a constant (spanned)
endowment B := x > 0, while [15] provide the multi-dimensional defini-
tion, but only investigate the utility maximization problem. [23] study the
multi-dimensional pricing problem only for small values of q0 under a de-
cay assumption on ξ which we discuss later. Since we need to fix q0 to be
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(1, 0), the asymptotic results of [23] cannot be applied to the general con-
ditional Davis prices. To highlight one non-trivial difference between our
setting and [23], let us recall that it has been known since [16] that even
when B := x > 0 is constant, marginal utility-based prices of the payoff ϕ
can form a non-trivial interval. Such an occurrence is, however, treated as
a rare pathology and explicitly assumed away via a decay condition in [23].
In our setting, where B is unspanned, we provide an example showing that
even in Samuelson’s geometric Brownian motion model with constant coef-
ficients, there exists a whole spectrum of explicit bounded payoffs ϕ with
a non-trivial and explicitly computable interval of marginal utility-based
prices.

While the notion of marginal utility-based prices has been around for more
than two decades (we discuss related literature below), a characterization
of all constants p satisfying (1.2) when both B and ϕ are unspanned is
currently not available. The main contribution of this paper provides a
set of conditions imposed on (B,ϕ) under which the two endpoints of the
interval of marginal utility-based prices for the payoff ϕ can be explicitly
computed. Our main results are:

(1) For an arbitrary endowment B ∈ L∞
++, we show that the interval of

marginal utility-based prices for the payoff ϕ ∈ L∞(P) is given by

the set of all 〈ϕ, Q̂〉 ⊂ R, when Q̂ ∈ba(P) ranges through the set
of finitely-additive minimizers of the associated dual utility problem
(as introduced in [6]). Here 〈·, ·〉 denotes the dual pairing between
L∞(P) and its dual ba(P) := (L∞(P))′.

(2) It is well-known that marginal utility-based prices are linked to
derivatives of the primal utility value function (1.1). We show that
under a mild growth condition on the utility function U(ξ) at ξ = 0,
the directional derivative of v(ϕ;B) in the direction of ϕ can be
characterized as the value of a certain linear stochastic control prob-
lem. Furthermore, we show by means of an example that even in
the log-utility case, the mapping

R ∋ x→ v(x;B);

that is, the restriction of v(·;B) to constant payoffs ϕ = x ∈ R can
fail to be differentiable on the interior of its domain1. See also the
discussion in Erratum [7].

(3) Under the additional assumption of unique super-replicability from
[27] placed on (B,ϕ), we solve the linear stochastic control problem
mentioned in (2) explicitly. This gives us formulas for the two end-
points describing the interval of marginal utility-based prices. As

1When B := x > 0 is constant, Theorem 2.2 in [22] ensures smoothness of the primal
value function (1.1). However, when B ∈ L∞

++ is unspanned, Example 6.1 below illustrates
that smoothness can fail.
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an offshoot, we show additionally that the mapping ϕ → v(ϕ;B) is
smooth whenever B is uniquely super-replicable.

We wish to stress that while some known results related to marginal
utility-based prices extend verbatim from the constant endowment case B :=
x > 0 to the general, unspanned case of B ∈ L∞

+ , not all results do. Indeed,
the example mentioned in (2) above illustrates a non-trivial difference.

Because of market incompleteness, the interval of arbitrage-free prices for
ϕ often takes on the extreme form with endpoints given by the essential
suprema and infima of ϕ. We refer the reader to monographs [3] and [14]
for further general information and thorough historical overviews of various
ways to price unspanned payoffs. Several authors have used ad hoc methods
to reduce the width of the interval of arbitrage-free prices (see, e.g., [5] and
its extension [2] where so-called good deal bounds, based on the Hansen-
Jagannathan bound for the Sharpe ratio, are used). In this respect, our
results show how marginal utility-based prices can be used to narrow down
the interval of arbitrage-free prices.

We continue by elaborating on the lack of uniqueness of marginal utility-
based prices mentioned above. For utility functions defined on the positive
axis (such as power and log), and with B := x > 0 constant, [16] show
that Davis prices are unique for all ϕ ∈ L∞ if and only if the dual utility
optimizer Q̂ is a martingale measure (in which case, the unique marginal

utility-based price of the payoff ϕ is given by EQ̂[ϕ]). However, it has been
known since [17] that there exist arbitrage-free models where the dual utility
optimizers fail the martingale property; see also [22] for further examples of
models satisfying NFLVR (no free lunch with vanishing risk) where the dual
utility optimizers fail the martingale property. As a consequence, there are
models for which there exists a bounded payoff ϕ with non-unique marginal
utility-based prices (see [16] for an abstract construction of such a payoff ϕ).
When uniqueness is considered indispensable, one could restrict attention to
financial models and utility functions which produce martingale dual utility
optimizers (see, e.g., the BMO-type condition used in [24]), or consider only
payoffs ϕ with unique Davis prices (as done in [23]). We do not impose such
restrictions and our intervals of marginal utility-based prices are generally
nontrivial.

We finish this introduction with a brief summary of the sizable literature
on marginal utility-based prices in the case when B := x > 0 is constant
(more generally, when B ∈ L∞

++ is spanned). The strand of literature that
comes closest to this paper where U is finite only on the positive axis includes
[6], [15], [23], and [16].2 Let us comment on their similarities and differences
with our paper:

2When U ’s domain is R (such as exponential utility) the corresponding dual optimizer
is always a martingale; see [1]. Consequently, for such utility functions, marginal utility-
based prices are always unique and our analysis offers nothing new in that case.
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- [6] focus on the utility-maximization problem itself and do not consider
pricing.

- The notion of marginal utility-based prices is defined in Remark 1 on
page 849 of [15], and is not studied beyond a standard super-differential
characterization.

- The authors of [16] perform an in-depth study of marginal utility-based
prices in the constant endowment case, i.e., B := x > 0 for some constant x
(or more generally for B spanned). [16] created the first abstract example
exhibiting non- unique marginal utility-based prices.

- In [23], the authors perform an asymptotic analysis. As discussed earlier
and further detailed in Remark 4.4 below, these results do not apply to our
setting. Moreover, [23] work under assumptions guaranteeing that ϕ has a
unique marginal utility-based price. These assumptions come in the form
of a decay condition on ϕ and can be found already in [16]. This decay
condition, in particular, is not satisfied for a generic bounded payoff. We
do not require such a decay property and consequently, the set of claims
we consider and the set considered in [23] do not nest in either direction.
Indeed, based on the famous counterexample in [11], we construct an explicit
example of a family of payoffs with constant B := x > 0 (as in [23]) which
has a non-trivial interval of marginal utility-based prices. This example
illustrates that even for a constant endowment B := x > 0, our setting
allows for non-unique prices whereas the setting of [23] always produces a
unique marginal-utility based price.

The paper is organized as follows. The model is described, the termi-
nology and notation set, standing assumptions imposed, and preliminary
analysis of our central utility-maximization problem is performed in Section
2. In Section 3 we define conditional Davis prices. In Section 4 we recall
the definition of marginal utility-based prices from [15] and we show that
conditional Davis prices can be seen as a projection of marginal-utility based
prices. Section 5 characterizes the Davis prices from the dual point of view
and lays out some of the first consequences of this characterization. Direc-
tional derivatives of the primal utility- maximization problem are studied
in Section 6 which also gives the explicit example of non-smoothness men-
tioned in (2) above. Section 6 also gives a characterization of the directional
derivative in terms of a linear stochastic control problem. Section 7 re-
calls the definition of unique super-replicability from [27] and provides a
family of examples of uniquely super-replicable claims. The main result
of Section 7 gives an explicit expression for the directional derivative of
the utility-maximization value function under the unique super-replicability
condition. This result is subsequently used in Section 8 to give explicit for-
mulas for the interval of marginal utility-based prices in a general setting.
These formulas are then used in two examples where one example is set in
a Samuelson-Black- Scholes-Merton type model and illustrates the fact that
non-uniqueness can arise even in the simplest of settings (this supports our
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claim in the abstract). These examples also allow us to give explicit expres-
sions for the first-order approximation of the hedging portfolios associated
to the end-points of the interval of marginal utility-based prices.

2. The setup and assumptions

2.1. The market model. Let (Ω,F , {Ft}t∈[0,T ],P) be a filtered probabil-
ity space which satisfies the usual conditions, and let {St}t∈[0,T ] be a locally
bounded semimartingale. L(S) denotes the set of all predictable S-integrable
processes andM denotes the set of all P-equivalent countably-additive prob-
ability measures Q on F for which S is a Q-local martingale.

Standing Assumption 2.1 (NFLVR). M 6= ∅. �

Remark 2.2. We assume that the asset-price process S is locally bounded
and postulate the existence of a local martingale measure. While it is pos-
sible to relax our setting to the non-locally-bounded case (as used in, e.g.,
[6]), it is not be possible to relax Assumption 2.1 so as to imply the existence
of a supermartingale deflator only. Indeed, the presence of a non-replicable
endowment B makes the admissibility class which produces only nonnega-
tive wealth processes too small to host an optimizer. This delicate issue is
discussed and illustrated on pages 240, 241 in [26]. To keep the focus of the
current paper on the issues directly related to conditional Davis pricing, we
have opted for a set of assumptions which is slightly stronger than absolutely
necessary.

2.2. Gains and admissibility. The investor’s gains process has the fol-
lowing dynamics

(π · S)t :=
∫ t

0
πu dSu, t ∈ [0, T ],(2.1)

for some π ∈ L(S). We call π ∈ L(S) admissible if the gains process is
uniformly lower bounded by a constant in which case we write π ∈ A. The
set of terminal outcomes is denoted by K, i.e., we define

K := {(π · S)T : π ∈ A}.
2.3. The primal problem. Let U be a utility function on (0,∞), i.e., U
is strictly concave, strictly increasing, and continuously differentiable with
U ′(0+) = +∞ and U ′(+∞) = 0. When necessary, we extend the domain of
U to R by setting U(x) = −∞ for x < 0 and U(0) = infx>0 U(x). Finally,
U is said to be reasonably elastic (as defined in [22]) if

lim sup
x→∞

xU ′(x)
U(x) < 1.

Even though we need it for some of our results, we do not impose the
condition of reasonable elasticity from the start.
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Let v be defined as in (1.1) with the above notion of admissibility. Then,
for any B ∈ L∞

++ := ∪x>0(x+ L∞
+ ) we define

U(B) := v(0;B) = sup
X∈K

E

[

U
(

B +X
)]

(2.2)

with the convention that E[U(B + X)] = −∞ if E[U(B + X)−] = +∞.
Because U(B) ≥ U(essinf B) > −∞, U is (−∞,∞]-valued on L∞

++. In (2.3)
below, we impose a dual properness assumption which among other things
ensures that U is finitely valued on L∞

++.

2.4. The dual utility maximization problem. The set of equivalent lo-
cal martingale measures M can be identified - via Radon-Nikodym deriva-
tives with respect to P - with a subset of L1

+(P) and embedded, naturally,

into ba(P) := L∞(P)∗ ⊇ L1(P). We define M∗
as the weak∗-closure of M

and we define D ⊂ ba+(P) as the family of all yQ where y ∈ [0,∞) and

Q ∈ M∗
. We can then define the dual utility functional by

VB(µ) := sup
X∈L∞

(

E[U(B +X)]− 〈µ,X〉
)

, µ ∈ ba(P).

In particular, VB is convex, lower weak∗-semicontinuous on ba(P) and bound-
ed from below by E[U(B)] ∈ R. For the reminder of the paper we impose
a properness assumption. While not the weakest possible in our setting,
this assumption allows us to deal swiftly, and yet with a minimal loss of
generality, with several technical points that are not central to the message
of the paper:

Standing Assumption 2.3 (Properness). There exist y0 ∈ (0,∞) and
Q0 ∈ M such that µ0 := y0Q0 satisfies

VB(µ0) <∞.(2.3)

�

Thanks to a minimal modification of Lemma 2.1 on p. 138 in [30] and the
discussion before it, VB admits the following representation

VB(µ) = E

[

V
(

dµr

dP

)]

+ 〈µ,B〉, µ ∈ D,(2.4)

where V is the dual utility function (strictly convex) defined by

V (y) := sup
x>0

(

U(x)− xy
)

, y > 0.

Consequently, Fenchel’s inequality and (2.3) guarantee that the primal value
function U satisfies U(B) < ∞ for all B ∈ L∞

++. Furthermore, (2.3) also
ensures that the corresponding dual value function defined by

V(B) := inf
µ∈D

VB(µ), B ∈ L∞
++,(2.5)

is finitely valued. For B ∈ L∞
++ we let D̂(B) denote the set of all minimizers,

i.e., all those µ ∈ D such that V(B) = VB(µ).
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The next result collects some basic facts we will need in the following
sections:

Lemma 2.4. For each B ∈ L∞
++, the set D̂(B) is a nonempty weak∗-compact

subset of ba(P) and there exists a nonnegative random variable Ŷ = Ŷ (B)

such that P[Ŷ > 0] > 0 and

Ŷ = dµr

dP for all µ ∈ D̂(B).

Furthermore, the strong duality U(B) = V(B) holds for all B ∈ L∞
++.

Proof. Let {µn}n∈N be a minimizing sequence for VB of the form

µn = ynQn where Qn ∈ M∗
and {yn}n∈N ⊆ [0,∞).

To see that {yn}n∈N is bounded, we note that (2.3) produces the finite upper
bound:

VB(µ0) ≥ lim sup
n

E[V (yn
dQr

n

dP )] + yn〈Qn, B〉

≥ lim sup
n

V (yn) + yn essinf B.

The first inequality follows from (2.4) and the minimizing property of the
sequence {µn}n∈N whereas the last inequality follows from the non-increasing
property of V and Jensen’s inequality. Because V ′(∞) = 0 and essinf B > 0
the boundedness property of {yn}n∈N follows.

Because the finitely-additive probabilities {Qn}n∈N belong to the weak∗-
compact set M∗

, we can conclude that {µn}n∈N admits a weak∗-convergent
subnet µα such that µα → µ, for some µ ∈ D. The functional VB is lower
semicontinuous and we get

V(B) = lim
α

VB(µα) ≥ VB(µ).

Therefore, µ is a minimizer over D and we have D̂(B) 6= ∅.
Next, we show that all µ ∈ D̂(B) have the same regular part. For that,

suppose that µr1 6= µr2. Then, µ = 1
2µ1 +

1
2µ2 ∈ D and by (2.4) we have

1
2VB(µ1) +

1
2VB(µ2) =

1
2E

[

V (
dµr1
dP )

]

+ 1
2E

[

V (
dµr2
dP )

]

+ 〈µ,B〉 > VB(µ),

by the strict convexity of V . However, this is in contradiction with the
minimality of µ1 and µ2.

To see that Ŷ 6= 0 we argue by contradiction and suppose that P[Ŷ =
0] = 1. In that case V (0) < ∞ and, so, thanks to Jensen’s inequality, we
have VB(µ) <∞ for all µ ∈ D. In particular, we have for some Q ∈ M and

µ̂ ∈ D̂(B)

VB(µ
ε) <∞, where µε := εQ+ (1− ε)µ̂, ε ∈ [0, 1].

Because the regular-part functional is additive we have

µrε = εQ+ (1− ε)µ̂r = εQ.



CONDITIONAL DAVIS PRICING 9

Therefore, µ̂’s minimality produces

E[V (εdQdP )] + 〈µε, B〉 = VB(µε) ≥ VB(µ̂) = V (0) + 〈µ̂, B〉.
Fatou’s lemma then implies

〈Q− µ̂, B〉 ≥ lim inf
εց0

1
ǫ

(

V (0)− E

[

V
(

εdQdP

)])

= −V ′(0) = +∞.

This is a contradiction because B ∈ L∞(P) ensures that the left-hand-side
is finite.

From the above, we know that µ̂(Ω) is uniformly bounded over D̂(B).

Therefore, the weak∗-closed set D̂(B) is norm bounded and the compactness

property of D̂(B) follows from the Banach-Alaoglu theorem.
Finally, to establish the strong duality property, we define the nested

sequence of weak∗-compact dual sets

Dn := {µ ∈ D : ||µ|| ≤ n}, n ∈ N,

as well as the primal set

C := (K − L0
+) ∩ L∞ = {X ∈ L∞ : 〈Q,X〉 ≤ 0 for all Q ∈ M}.

For a proof of the last identity see, e.g., Corollary 3.4(1) in [28]. As a
consequence, we have the following identity for X ∈ L∞(P)

lim
n→∞

sup
µ∈Dn

〈µ,X〉 =
{

0, X ∈ C,
+∞, X 6∈ C.

The minimax theorem (see, e.g., Theorem 2.10.2, p. 144 in [31]) can then
be used to produce

V(B) = lim
n→∞

inf
µ∈Dn

sup
X∈L∞(P)

(

E[U(X +B)]− 〈µ,X〉
)

= sup
X∈C

E[U(X +B)].

The monotone convergence theorem ensures that this expression equals the
primal value function U(B). �

3. Conditional Davis prices

Definition 3.1. For B ∈ L∞
++, a random variable R ∈ L∞ is said to be

B-irrelevant, denoted by R ∈ I(B), if

U(B + εR) ≤ U(B), ∀ε ∈ R.(3.1)

�

Remark 3.2. The function U finite-valued at B, as well as in a L∞-open ball
around B. Therefore, both sides of (3.1) are real-valued for small enough
ε. Thanks to the concavity of U, the right-hand-side of (3.1) may only take
the negative infinite value for large values of ε. Therefore, for R ∈ I(B), it
is enough to check (3.1) only for ε in a neighborhood of 0.
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Lemma 3.3. I(B) is a nonempty, weak∗ closed linear subspace in L∞.

Proof. The function U is concave at B, so I(B) is the set of those directions
R with the property that the directional derivative of U in directions R and
−R are nonpositive. In other words, we have

sup
µ∈∂U(B)

〈R,µ〉 ≤ 0 and sup
µ∈∂U(B)

−〈R,µ〉 ≤ 0,

where ∂U(B) ⊆ ba(P) is the super-differential of U. Therefore, I(B) is the
annihilator of ∂U(B), i.e.,

I(B) = {R ∈ L∞ : 〈µ,R〉 = 0 for all µ ∈ ∂U(B)},
which implies the statement. �

The following definition is due to Mark Davis and originates in [8]:

Definition 3.4. A number p ∈ R is said to be a B-conditional Davis
price (or a B-marginal utility-based price) and simply a conditional
Davis price if B is clear from the context, for a payoff ϕ ∈ L∞ if

ϕ− p is B-irrelevant.

The set of all B-conditional Davis prices of ϕ is denoted by P (ϕ|B). �

Consequently, p ∈ P (ϕ|B) if and only if

(3.2) U(B + ε(ϕ− p)) ≤ U(B), ∀ε ∈ R.

4. marginal utility-based prices

In this section we recall the definition of marginal utility-based prices and
make the connection to the conditional Davis prices defined in the previous
section. We start with a definition given in [15]. Let the derivative payoff ξ
be a Rd-valued, bounded, FT measurable random variable. Recall that the
function v is defined in (1.1).

Definition 4.1 (Remark 1., p. 849 in [15]). A vector p0 ∈ Rd is said to be
a marginal utility-based price of ξ at (x0, q0) ∈ Rd+1 if

v(q · (ξ − p0);x0 + q0 · ξ) ≤ v(0;x0 + q0 · ξ), ∀q ∈ Rd.

�

In our context, B := x0+q0 ·ξ and the investor prices units of ξ in addition
to q0. As observed in [15], to study these prices it is convenient to introduce
a finite-dimensional value function. Then, marginal utility prices can be
expressed as sub-differentials of this concave function. Indeed, consider the
value function u(q, x) defined on Rd+1 by

(4.1) u(q, x) := U(x+ q · ξ) = sup
X∈K

E

[

U
(

x+ q · ξ +X
)]

.
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Under our standing assumptions, u is a proper concave function on Rd+1.
Moreover, if there is no gains process X ∈ K such that x + q · ξ + X ≥ 0,
then the value function u is by definition equal to minus infinity.

The elementary connection between marginal-utility based prices and the
sub-differential of u in the sense of convex analysis is given in Remark 1
in [15], Equation (3.11) in [16], and Equation (24) in [23]. We re-state it
here for future reference. First, we note that at any (q0, x0) in the interior
of the domain of u, the set of sub-differentials is non-empty and compact.
Moreover, the second component of any (zq, zx) ∈ ∂u(q0, x0) satisfies zx > 0.

Lemma 4.2 ([15], [16], and [23]). Let y0 := (q0, x0) ∈ Rd+1 be in the interior
of the domain of u. Then, p0 ∈ Rd is a marginal utility based price of ξ at
y0 if and only if

p0 =
zq
zx
,

for some (zq, zx) ∈ ∂u(y0).

Proof. By definition p0 ∈ Rd is a utility based price of ξ at y0 if and only if

u(q0 + q, x0 − q · p0) ≤ u(q0, x0), ∀q ∈ Rd.

We define
f(q) := u(q0 + q, x0 − q · p0), q ∈ Rd.

Then, f is a concave function and p0 ∈ Rd is a marginal utility based price
of ξ at y0 if and only if 0 ∈ ∂f(0). Moreover, the sub-differential of f is
connected to the sub-differential of u by,

∂f(0) =
{

−zxp0 + zq ∈ Rd : z = (zq, zx) ∈ ∂u(y0)
}

.

Therefore, 0 ∈ ∂f(0) if and only if there exists (zq, zx) ∈ ∂u(y0) such that
−zxp0 + zq = 0. �

4.1. Conditional Davis prices and marginal utility-based prices. In
this subsection, we show that conditional Davis prices defined above can
be seen as the projection of marginal utility-based prices from the previous
section at an appropriately chosen point. For given B ∈ L∞

++ and ϕ ∈ L∞,

we let Z(ϕ|B) be the set of all marginal utility-based prices p0 ∈ R2 for the
random variable ξ := (B,ϕ) at the point x0 := 0, q0 := (1, 0). With these
parameter choices p0 ∈ Z(ϕ|B) provided that we have

(4.2) U(B + q · ((B,ϕ) − p0)) ≤ U(B), ∀q ∈ R2.

Next, we show that the projection of Z(ϕ|B) onto its second component is
the set of conditional Davis prices P (ϕ|B) from Definition 3.4 above. Also,
because B ∈ L∞

++ and ϕ ∈ L∞, the point (x0, q0) = (0, (1, 0)) is in the
interior of the domain of u defined in (4.1).

Lemma 4.3. For B ∈ L∞
++ and ϕ ∈ L∞ we have

P (ϕ|B) = {p ∈ R : ∃ p0 ∈ Z(ϕ|B) such that p = p0 · (0, 1)} .
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Proof. Let (pB , p) ∈ Z(ϕ|B). We use (4.2) with q := (0, ε). The result is,

U(B + ε(ϕ − p)) ≤ U(B),

for all ε ∈ R. In view of (3.2), p ∈ P (ϕ|B).
To prove the converse, fix p ∈ P (ϕ|B). Then, by (3.2)

u((1, ε),−εp) = U(B + ε(ϕ− p)) ≤ U(B) = u((1, 0), 0), ∀ε ∈ R.

Set
g(ε) := u((1, ε),−εp).

Then, 0 ∈ ∂g(0). Also, as in the proof of Lemma 4.2, we have

∂g(0) = {−zxp+ zq · (0, 1) ∈ R : z = (zq, zx) ∈ ∂u((1, 0), 0)} .
Hence, there exists z ∈ ∂u((1, 0), 0) such that

0 = −zxp+ zq · (0, 1).
We define p0 := zq/zx ∈ R2 and use Lemma 4.2 to arrive at p0 ∈ Z(ϕ|B).
It is also clear that p = p0 · (0, 1). �

Remark 4.4. In our context, we are given an endowment B and a derivative
with payoff ϕ (both B and ϕ pay off at time T ). Our goal is to study
marginal-utility based prices of ϕ conditioned on the fact that an endowment
B is given. Clearly, one does not price the endowment B. Hence, the
appropriate price is a projection of the set of marginal-utility based prices
onto its second component with ξ := (B,ϕ) at the points x0 := 0 and q0 :=
(1, 0). In Lemma 4.3, we proved that these two approaches are equivalent.

We can also use the above notation to summarize the related literature
as follows:

(1) Definition 4.1 and Lemma 4.2 are from [15]. [15] study only the util-
ity maximization problem and do not study marginal utility-based
prices beyond their Remark 1.

(2) Lemma 4.2 can also be found in [16]. Furthermore, when B :=
x > 0 is constant, [16] provide a growth condition on the claim’s
payoff ϕ which ensures uniqueness of marginal utility-based prices
and exemplify that such prices can fail to be unique. In the case
when B := x > 0 is constant, Theorem 8.2 below supplements the
results in [16] with formulas for the two endpoints describing the
non-trivial interval of marginal utility-based prices. We stress that
when B is unspanned, the results in [16] do not apply. Example 6.1
below illustrates that there can be major differences between the two
cases: (i) B := x > 0 is constant and (ii) B is unspanned.

(3) [23] use the growth condition from [16] mentioned in (2) above which
ensures uniqueness of the marginal-utility based prices. [23] lin-
early expand the marginal-utility based price from the base case
B := x > 0 constant. Our analysis differs in three crucial ways
from [23]: (i) we allow for non-uniqueness even when B := x > 0
constant, (ii) we allow for B being unspanned, and (iii) we do not
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perform an asymptotic expansion in small quantities q of the claim’s
payoff ϕ but we instead provide closed-form expressions for the in-
terval of marginal utility-based prices in Theorem 8.2 below. These
non-trivial interval end-points are explicitly calculated in the two
examples in Section 8.1.

While the notion of pricing in Definition 4.1 is consistent with the existing
literature, no prior results cover the case where the investor’s endowment B
is unspanned.

5. Characterization of Conditional Davis Prices

5.1. A dual characterization. The dual characterization of the set of
conditional Davis prices in Theorem 5.2 below rests on the following, simple,
lemma:

Lemma 5.1. A random variable R ∈ L∞ is B-irrelevant if and only if

inf
µ∈D

(

VB(µ) + |〈µ,R〉|
)

= inf
µ∈D

VB(µ).(5.1)

Proof. Because I(B) is a vector space, we can scale R so that, without loss
generality, we can assume that B±R ∈ L∞

++. Then, by the minimax theorem
(see Theorem 2.10.2, p. 144 in [31]), we have

inf
µ∈D

(

VB(µ) + |〈µ,R〉|
)

= inf
µ∈D

sup
|ε|≤1

(

VB(µ) + ε〈µ,R〉
)

= sup
|ε|≤1

inf
µ∈D

(

VB(µ) + ε〈µ,R〉
)

= sup
|ε|≤1

U(B + εR).

The same equality with R = 0, implies that (5.1) is equivalent to

U(B) = sup
|ε|≤1

U(B + εR)

which is, in turn, equivalent to R ∈ I(B). �

By Lemma 2.4, we have µ(Ω) > 0 for each µ ∈ D̂(B). Therefore, the
family

D̂0(B) := { 1
µ(Ω)µ : µ ∈ D̂(B)}(5.2)

is a well-defined nonempty family of finitely-additive probabilities. We now
have everything set up for our main characterization of conditional Davis
prices:

Theorem 5.2. For ϕ ∈ L∞(P) the following two statements are equivalent

(1) p ∈ P (ϕ|B), i.e., p is a B-conditional Davis price of ϕ.

(2) p = 〈Q, ϕ〉, for some Q ∈ D̂0(B).

In particular, P (ϕ|B) is a nonempty compact subinterval of R.
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Proof. (1) ⇒ (2): The first part of the proof of Lemma 2.4 applies to the
functional µ 7→ VB(µ) + |〈µ,ϕ − p〉|, and we can conclude that it admits
a minimizer µ̂. By Lemma 5.1, the same µ̂ must minimize the functional
µ 7→ VB(µ), as well, and, so, µ̂ ∈ D̂(B) and 〈µ̂, ϕ− p〉 = 0.

(2) ⇒ (1): Suppose that p is such that 〈µ∗, ϕ − p〉 = 0, for some µ∗ ∈
D̂0(B). Then, for any µ, we have

VB(µ
∗) + |〈µ∗, ϕ− p〉| = VB(µ

∗) ≤ VB(µ) ≤ VB(µ) + |〈µ,ϕ − p〉|,
and Lemma 5.1 can be used.

Finally, Lemma 2.4 ensures that D̂(B) is weak∗-compact and the last
claim follows. �

5.2. First consequences. A reinterpretation in the setting of portfolios
with convex constraints leads to the following dual characterization:

Corollary 5.3. Suppose that U is reasonably elastic. Then, for each con-
stant c ≥ 0 and each R ∈ L∞ we have

inf
µ∈D

(

VB(µ) + c|〈µ,R〉|
)

= inf
y≥0,Q∈M

(

VB(yQ) + c|〈yQ, R〉|
)

.

Proof. Let C := (K − L0
+) ∩ L∞ and let C′ be the family of all random

variables X ′ ∈ L∞ of the form

X ′ = B +X + εR, where X ∈ C, ε ∈ [−c, c].
The support function αC′ for the set C′ is then given by

αC′(µ) = sup
X′∈C′

〈µ,X〉

= 〈µ,B〉+ sup
X∈C, ε∈[−c,c]

(

〈µ,X〉 + ε〈µ,R〉
)

= 〈µ,B〉+ c|〈µ,R〉| +
{

0, µ ∈ D,
+∞, µ 6∈ D.

It follows that

inf
µ∈D

(

VB(µ) + c|〈µ,R〉|
)

= inf
µ∈ba(P)

(

V0(µ) + αC′(µ)
)

.(5.3)

Moreover, the set C is weak∗-closed by Theorem 4.2 in [9]; hence, so is C′.
Hence, the assumptions of Proposition 3.14, p. 686 of [28] are satisfied (via
Corollary 3.4, p. 679 in [28]) and, so, the infimum on the right-hand side of
(5.3) can be replaced by an infimum over σ-additive measures. �

Our next two consequences of Theorem 5.2 provide a partial generalization
and an alternative method of proof for Theorem 3.1, p. 206 in [16].

Proposition 5.4. Suppose that U is reasonably elastic and that the dual
problem (2.5) admits a non-σ-additive optimizer. Then there exists A ∈ F
such that ϕ = 1A has multiple B-conditional Davis prices.
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Proof. Let {µn}n∈N be a minimizing sequence for the problem infµ∈D VB(µ).
By Corollary 5.3 we can assume that each µ is countably additive. Moreover,
the argument of Lemma 2.4 guarantees that the sequence {µ(Ω)n}n∈N is
bounded. Therefore, {µn}n∈N belongs to a weak∗-compact subset of ba(P).
By extracting a further subsequence, we may assume that the sequence of
total masses µn(Ω) converges towards a positive constant y > 0 (Lemma 2.4
ensures that y 6= 0).

We suppose first that {µn}n∈N is not weak∗-convergent. Then, two of
its convergent subnets will have different limits, and both of these will be
elements of D̂(B) with the same total mass y > 0. Hence, the set D̂0(B)
of (5.2) is not a singleton, and, by Corollary 5.2, there exists ϕ = 1A, with
A ∈ F , with two different conditional Davis prices.

On the other hand, suppose that {µn}n∈N converges to µ̂ in the weak∗-
sense. Then we have µ̂ ∈ D̂(B). Furthermore, by the Vitali-Hahn-Sachs
theorem (see [12], Corollary 8 on p.159) the limit µ̂ is countably additive.

Hence, the set D̂(B) will have at least two different elements - one countably
additive and one not. Then a random variable ϕ = 1A with two different
conditional Davis prices can be constructed as above. �

The next consequence of Theorem 5.2 gives a sufficient condition (analo-
gous to that of Theorem 3.1 on p. 206 of [16]) for the uniqueness of condi-
tional Davis prices. Before we state it, we recall that, under the condition
of reasonable elasticity, [6] show there exists a process π̂ ∈ A such that

X̂ := (π̂ · S)T +B satisfies

E[U(X̂)] = U(B) and U ′(X̂) =
dµ̂r

dP
,(5.4)

where µ̂ ∈ D̂(B). The random variable X̂ is P-a.s. unique with this property.

Corollary 5.5. Suppose U is reasonably elastic and that |ϕ| ≤ cX̂, for

some constant c ≥ 0, where X̂ is as in (5.4). Then the set P (ϕ|B) of
B-conditional Davis prices for ϕ ∈ L∞ is a singleton.

Proof. In view of Lemma 2.4 and Theorem 5.2, it will be enough to show
that 〈µ̂s, X̂〉 = 0, for each µ̂ ∈ D̂(B). This, in turn, follows directly from
the first part of Equation (4.7) in [6]. �

6. Directional derivatives of the primal value function

Our next task is to study directional differentiability of the primal utility-
maximization value function U defined by (2.2). Its relevance in the context
of Davis pricing has been noted by several authors (including Davis in [8]),
and we use the obtained results in the later sections to give a workable char-
acterization of the interval of conditional Davis prices. First we show, by
means of an example, that smoothness - even in the most “benign” directions
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- cannot be expected in general. Then we give a characterization of the di-
rectional derivative in terms of a linear control problem. We hope that both
our counterexample and the later characterization hold some independent
interest outside of the context of Davis pricing.

6.1. An example of nonsmoothness. Our next example shows that the
set D̂(B) of dual minimizers may contain measures with different total

masses. In other words, µ̂(Ω) may not be constant over µ̂ ∈ D̂(B). Con-
sequently, U may fail to be differentiable even in “constant directions” in
the sense that ε → U(B + ε) may fail to be differentiable at ε := 0. Once
we introduce the concept of unique superreplicability in the next section,
we will see how it can be used to regain differentiability in certain cases of
interest.

For simplicity and concreteness, we base the example on Example 5.1’ in
[22], and use the following notation and conventions: All random variablesX
will be defined on the sample space Ω := N0, and we write Xn for X({n}).
Countably-additive measures are identified with sequences in ℓ1+ and for

Q = (qn) ∈ ℓ1+ we write 〈Q,X〉 for ∑ qnXn whenever X = (Xn) ∈ ℓ∞.

Example 6.1. We start by recalling the elements of (a special case of) the
one period Example 5.1’ in [22] where Ω := N0 and P = (pn) with

p0 :=
3
4 , pn := 2−n

4 for n ∈ N.

The one-period stock-price increment ∆S = (∆Sn) is defined as follows

∆S0 := 1 and ∆Sn := 1−n
n for n ∈ N.

With U := log, the primal problem is defined by

u(x) := sup
π∈[−x,x]

E[U(x+ π∆S)], x > 0.

Let Q denote the set of all finite martingale measures, i.e.,

Q := {Q ∈ ℓ1+ : 〈Q,∆S〉 = 0},
and let M := {Q ∈ Q : 〈Q, 1〉 = 1}. Because V (y) = −1− log(y), the dual
problem is given by

v(y) := inf
Q∈M

E[V (y dQdP )] = V (y) + v∗, where v∗ := inf
Q∈M

E[− log(dQdP )].

We will start by showing that no minimizing sequence (QN )N ⊂ M for v∗

(equivalently, for v(y)) can be weakly convergent in the sense that 〈QN , f〉
cannot converge for all test functions f ∈ ℓ∞. It is a consequence of the
Vitali-Hahn-Sachs Theorem (see, e.g., Corollary 8, p.159 in [12]) that ℓ1 is
weakly sequentially complete, so any weakly convergent sequence is neces-
sarily weakly convergent in ℓ1. Therefore, any weak limit of any minimizing
sequence (QN )N must also belong to M and is, therefore, a minimizer for
v∗. However, this would contradict the strict supermartingale property of
the dual log-optimizer shown in Example 5.1’ in [22].
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As a consequence of the above, for a given minimizing sequence (QN )N ,
there exists a random variable H ∈ ℓ∞ such that

〈QN ,H〉 does not converge in R as N → ∞.(6.1)

Because 〈QN , 1〉 = 1, for each N , we can assume that H ≥ 1. Moreover,
there exist two subsequences (Q1,N )N and (Q2,N )N of (QN )N such that the
limits

y1 = lim
N

〈Q1,N ,H〉 and y2 = lim
N

〈Q2,N ,H〉 exist with y1 6= y2.(6.2)

With H as above, we define B := 1/H and a new stock price process with
increments

∆S̃ := B∆S,

and then consider the log-utility maximization problem with the random
endowment B and the stock-price increments ∆S̃. The associated dual
problem3 is given by

ṽ(y) := inf
Q̃∈M̃

E[V (y
dQ̃

dP
)] + y〈Q̃, B〉

= −1 + inf
Q̃∈M̃

(

E[− log(y
dQ̃

dP
)] + y〈Q̃, B〉

)

= −1 + E[log(B)] + inf
Q̃∈M̃

(

E[− log(y
dQ̃

dP
B)] + y〈Q̃B, 1〉

)

= E[log(B)] + inf
Q̃∈M̃

(

E[V (y
dQ̃

dP
B)] + y〈Q̃B, 1〉

)

, y > 0,

where

Q̃ := {Q̃ ∈ ℓ1+ : 〈Q̃,∆S̃〉 = 0} and M̃ := {Q̃ ∈ Q̃ : 〈Q̃, 1〉 = 1}.
Because Q̃ ∈ Q̃ if and only if Q = Q̃B ∈ Q, we have

inf
y>0

ṽ(y) = E[log(B)] + inf
y>0

inf
Q∈M

(

E[V (y
dQ

dP
)] + y

)

= E[log(B)] + inf
y>0

(

v(y) + y
)

= E[log(B)] + inf
y>0

(

V (y) + y + v∗
)

= E[log(B)] + v∗.

3 It has been shown in [28, Lemma 3.12] that under the reasonable asymptotic elasticity
condition, infimization over the set of countably-additive martingale measures - as opposed
to its finitely-additive enlargement as in [6] - leads to the same value function.
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By using the minimizing sequences (Q1,N )N , and (Q2,N )N constructed
above we define the sequence of probability measures

Q̃i,N :=
Qi,NH

〈Qi,NH, 1〉 ∈ M̃ for i = 1, 2.

We can use (6.2) and the fact that (Qi,N )N , i = 1, 2, are minimizing se-
quences for v∗ to see

E[V (yi
dQ̃i,N

dP )] + yi〈Q̃i,N , B〉 = E[V ( yiH
〈Qi,NH,1〉

dQi,N

dP )] + yi
〈Qi,NH,1〉

= E[V ( yiH
〈Qi,NH,1〉)] +

yi
〈qi,NH,1〉 − E[log(dQ

i,N

dP )]

→ E[log(B)] + v∗

= inf
y>0

ṽ(y).

Clearly, ṽ(yi) ≥ infy>0 ṽ(y), for i = 1, 2, which implies that Q̃i,N is a min-
imizing sequence for ṽ(yi). Therefore, ṽ(y1) = ṽ(y2) = infy>0 ṽ(y) which
implies that ṽ is constant on [y1, y2]. This, in turn implies, that the conju-
gate function to ṽ fails to be differentiable at 0 (indeed, the entire segment
[y1, y2] belongs to its superdifferential at zero). �

Remark 6.2.

(1) The construction of the random endowment B in Example 6.1 above
rests on the weak sequential completeness property of ℓ1 which, in
fact, holds for any L1-space. Example 6.1 above is therefore generic
in the sense that it can be applied to any model which produces
non-trivial singular components in the dual optimizer for the log-
investor (with constant endowment). This implies that there also
exist random endowments in the Brownian setting of Example 5.1
in [22] which produce a non-differentiable primal utility function.

(2) Example 6.1 seems to contradict the claimed smoothness of the pri-
mal value function stated in Theorem 3.1(i) in [6]4: With the nota-
tion from Example 6.1 we can define the primal utility function

ũ(x) := sup
π∈R

E[U(x+ π∆S̃ +B)], x ∈ R,(6.3)

where we use the convention E[U(x+ π∆S̃ +B)] = −∞ if E[U(x+

π∆S̃ + B)−] = +∞. Then ũ is not differentiable at x = 0 which is
an interior point in ũ’s domain.

6.2. A characterization via a linear stochastic control problem.
Even though the superdifferential of U at B consists of finitely-additive
measures related to the solution of the dual problem, it is possible to give a
characterization of directional derivatives without any recourse to finite ad-
ditivity. This is the most attractive feature of our linear characterization in

4The authors first learned from Pietro Siorpaes about the potential lack of correctness
of Remark 4.2 in [6]. We also refer the reader to Erratum [7] for further discussions.
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Proposition 6.5 below; however, as we shall see later, it also leads to explicit
computations in many cases. The price we pay is the increased complexity
of the linearized problem’s domain.

Throughout the reminder of the paper we impose the following assump-
tion, where X̂ is the primal optimizer characterized by (5.4), and whose
existence is guaranteed by the assumption of reasonable elasticity:

Assumption 6.3. U is reasonably elastic and there exists a constant b > 0
such that

X̂ U ′
(

(1− b)X̂
)

∈ L1(P).(6.4)

�

Remark 6.4. Assumption 6.3 holds automatically if, for example, U belongs
to the class of CRRA (power) utilities

U(x) = xp

p , for p ∈ (−∞, 1) \ {0} or U(x) = log(x).

Given the optimizer π̂ ∈ A and the random variable X̂, we let ∆(ϕ) :=
∪ε>0∆

ε(ϕ) where ∆ε(ϕ) denotes the class of all δ ∈ L(S), such that

π̂ + εδ ∈ A and X̂ + ε(ϕ + (δ · S)T ) ≥ 0.(6.5)

Because A is a convex cone and X̂ ≥ 0, the family ∆ε(ϕ) is nonincreasing
in ε ≥ 0 in the sense

ε1 ≤ ε2 ⇒ ∆ε2(ϕ) ⊆ ∆ε1(ϕ).(6.6)

Similarly, the family ∆ε(ϕ) is nondecreasing in ϕ ∈ L∞ in the sense

ϕ1 ≤ ϕ2 ⇒ ∆ε(ϕ1) ⊆ ∆ε(ϕ2).(6.7)

Proposition 6.5. Under Assumption 6.3 we have for ϕ ∈ L∞(P)

lim
εց0

1
ε (U(B + εϕ)− U(B)) = sup

δ∈∆(ϕ)
E[Ŷ

(

(δ · S)T + ϕ
)

],(6.8)

where Ŷ := dµ̂r

dP .

Proof. For small enough ε > 0 we can find πε ∈ A such that Xε = (πε ·
S)T +B + εϕ has the property that

E[U(Xε
T )] ≥ U(B + εϕ) − ε2.

For such an ε > 0 we define

δε = 1
ε

(

πε − π̂
)

.

Since π̂ + εδε = πε ∈ A, the first part of (6.5) above holds. To see that

the second part of (6.5) holds, we note that X̂ + ε
(

(δε · S)T + ϕ
)

= Xε and
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E[U(Xε)] > −∞ which implies X̂+ε
(

(δε ·S)T +ϕ
)

≥ 0. Therefore, we have
δε ∈ ∆ε(ϕ). The concavity of U then implies that

U(B + εϕ) ≤ E[U(Xε)] + ε2

≤ E[U(X̂)] + εE[U ′(X̂)(ϕ+ (δε · S)T )] + ε2

≤ U(B) + ε sup
δ∈∆ε(ϕ)

E[Ŷ ((δ · S)T + ϕ)] + ε2

≤ U(B) + ε sup
δ∈∆(ϕ)

E[Ŷ ((δ · S)T + ϕ)] + ε2.

This produces the upper bound inequality

lim sup
εց0

1
ε

(

U(B + εϕ) − U(B)
)

≤ sup
δ∈∆(ϕ)

E[Ŷ ((δ · S)T + ϕ)].

To prove the opposite inequality, we pick ε0 > 0 and δ ∈ ∆ε0(ϕ), so that

π̂ + ε0δ ∈ A and X̂ + ε0D ≥ 0, where

D = (δ · S)T + ϕ.

Because b > 0, we also have

X̂ + bε0D ≥ (1− b)X̂.

Therefore, for ε ∈ (0, ε1) with ε1 := bε0 we have

X̂ + εD ≥ (1− b)X̂ > 0.(6.9)

The concavity of U implies that for ε ∈ (0, ε1) we have

U(X̂ + εD) ≥ U(X̂) + εY εD where Y ε = U ′
(

X̂ + εD
)

.

Therefore, for ε ∈ (0, ε1) we obtain

U(B + εϕ) ≥ E[U(X̂ + εD)] ≥ U(B) + εE[Y εD].

In order to pass ε to zero we note that (6.9) gives us
(

Y εD
)−

≤ U ′((1− b)X̂
)

D− ≤ U ′((1− b)X̂
)

1
ε0
X̂,(6.10)

which is integrable by assumption. The uniform bound in (6.10) allows us

to use Fatou’s lemma together with Y ε → U ′(X̂) =: Ŷ , P-a.s., to conclude
that

lim inf
εց0

1
ε

(

U(B + εϕ)− U(ϕ)
)

≥ lim inf
εց0

E[Y εD] ≥ E[Ŷ D]. �

The following example highlights the role strict local martingales play
in the linear optimization problem appearing in (6.8). The next section
identifies the key components which make this toy example work.
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Example 6.6. Let (Ω,F ,P) be a probability space supporting two indepen-
dent Brownian motions (Z,W ) and we let {Ft}t∈[0,T ] be their augmented
filtration up to some maturity T > 0. We define the stock price dynamics
to be

dSt := St
(

λtdt+ dZt
)

, S0 > 0,(6.11)

where the process λ is as in [11] so that the minimal martingale density

E(−λ · Z)t := e−
∫ t

0 λudZu− 1
2

∫ t

0 λ
2
udu, t ∈ [0, T ],

fails the martingale property even though the set M of equivalent local
martingale measures is non-empty. As a consequence, Example 5.1 in [22]

shows that the log-investor’s dual utility optimizer Ŷt := Ŷ0E(−λ · Z)t is a
strict local martingale.

We consider the simple case where X̂0 := 1 and the payoff ϕ is constant.
The fact that we are working with the log-utility implies that Ŷ0 = 1, and
Remark 3.2 in [16] states that the unique Davis price of ϕ is ϕ itself, a

quantity different from E[ŶTϕ].
For δ ∈ ∆ε(ϕ) we have

(δ · S)t ≥ −ϕ− 1
ε X̂t, t ∈ [0, T ].

Thanks to the fact that Ŷ X̂ = 1, which is the standard myopic property of
optimizers in logarithmic utility maximization, the local martingale Ŷt

(

(δ ·
S)t+ϕ

)

is a lower bounded by −1
ε ; hence, it is a supermartingale. Therefore,

the limit on the left-hand side of (6.8) is bounded from above by

sup
δ∈∆(ϕ)

E[ŶT
(

(δ · S)T + ϕ
)

] ≤ ϕ.(6.12)

Because Ŷ is a strict local martingale, we see that for any δ ∈ ∆(ϕ) for which

the local martingale Ŷt(δ·S)t is a martingale the expression E[ŶT
(

(δ·S)T+ϕ
)

]
stays bounded away from the upper bound in (6.12). On the other hand,
that upper bound is attained at any δ ∈ ∆(ϕ) which satisfies the requirement

ŶT (δ · S)T = ϕ(Ŷ λ · Z)T . �

7. Uniquely superreplicable random variables

While the linear control problem of Proposition 6.5 provides a useful
characterization of U’s directional derivatives, the linear problem seems to
be difficult to solve explicitly in full generality. The present section out-
lines a relevant class of payoffs ϕ for which such a tractable solution is,
indeed, available. It involves the notion of unique superreplicability similar
to Condition (B1) in [27].

Definition 7.1. A random variable ψ ∈ L∞(P) is said to be

(1) replicable if there exists a constant ψ0 ∈ R and πψ ∈ A ∩ (−A)
such that

ψ = ψ0 + (πψ · S)T .
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(2) uniquely superreplicable (by Ψ) if Ψ ∈ L∞(P) is replicable,
Ψ ≥ ψ, and

x+ (π · S)T ≥ ψ ⇒ x+ (π · S)T ≥ Ψ

for all x ∈ R and π ∈ A.

Remark 7.2.

(1) The need to use uniformly bounded gains processes for replication
purposes such as in Definition 7.1(1) has long been recognized; see,
e.g., Definition 1.15 in [4] and the first part of Remark 3.2 in [16].

(2) The representation in Definition 7.1(1) of a replicable claim ψ in
terms of (ψ0, πψ) is unique. Moreover, the process (πψ · S)t is a
bounded Q-martingale for each Q ∈ M. Consequently, because
each µ ∈ D is the weak∗ limit of a net yαQα with yα ∈ [0,∞) and
Qα ∈ M, we have

〈µ, (πψ · S)t〉 = lim
α
yα〈Qα, (πψ · S)t〉 = 0.

(3) Provided it exists, the random variable Ψ in Definition 7.1(2) is
unique. If Ψ = Ψ0 + (πΨ · S)T uniquely superreplicates ψ, we have
the representation

Ψ0 = sup
Q∈M

EQ[ψ].

(4) Unique superreplicability is scale invariant: If ψ is uniquely super-
replicable by Ψ, then αψ is uniquely superreplicable by αΨ for α ≥ 0.
It is also invariant under translation by replicable random variables.
In particular, replicable random variables are uniquely superreplica-
ble.

Example 7.3. Let (Ω,F ,P) be a probability space supporting two indepen-
dent Brownian motions (β,W ) and we let {Ft}t∈[0,T ] be their augmented fil-
tration up to some maturity T > 0. With the set of all pathwise p-integrable
predictable processes denoted by Lp, we let S be the Itô process

dSt := Stσt
(

λtdt+ dβt
)

, S0 > 0,(7.1)

where σ, λ ∈ L2 are such that NFLVR holds.

We focus on payoffs of the form ϕ = ϕ(WT ), where ϕ : R → R is a
bounded Lipschitz function. To show that such ϕ(WT ) is uniquely super-
replicable by the constant supa ϕ(a), we start by assuming that

x+ (π · S)T ≥ ϕ(WT ) a.s.,

for some x ∈ R and some π ∈ A. Then, for each t ∈ [0, T ) we have

x+ (π · S)t ≥ esssup
Q∈M

EQ[x+ (π · S)T |Ft] ≥ esssup
Q∈M

EQ[ϕ(WT )|Ft].(7.2)

Lemma 7.4 below gives conditions under which the limit as t ↑ T of the
right-hand side of (7.2) equals supa ϕ(a). When these conditions are met,
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the continuity of the paths of the stochastic integral with respect to S implies
that x+(π ·S)T ≥ supa ϕ(a). This, in turn, confirms that ϕ(WT ) is uniquely
superreplicable by the constant supa ϕ(a). �

Lemma 7.4. In the setting of Example 7.3 above with ϕ : R → R bounded
and Lipschitz, assume that there exists a nonnegative (deterministic) func-

tion f ∈ L1([0, T ]) and a predictable process ν(0) ∈ L2 such that

(1) |ν(0)u | ≤ f(u), for Lebesgue-almost all u ∈ [0, T ], P-a.s., and

(2) the stochastic exponential Z
(0)
T := E(−λ ·β−ν(0) ·W )T is the Radon-

Nikodym density of some Q(0) ∈ M with respect to P.

Then

lim
t↑T

esssup
Q∈M

EQ[ϕ(WT )|Ft] = sup
a
ϕ(a).(7.3)

Proof. For a bounded and predictable process δ we define the process Z(δ)

by

dZ
(δ)
t := −Z(δ)

t

(

λt dβt + (ν
(0)
t + δt) dWt

)

Z
(δ)
0 := 1.

A simple calculation yields the following expression

Z
(δ)
T = Z

(0)
T E(−δ ·W (0))T ,

whereW
(0)
t :=Wt+

∫ t
0 ν

(0)
u du is a Q(0)-Brownian motion. With E(0) denot-

ing the expectation with respect to Q(0), we have

E[Z
(δ)
T ] = E(0)[E(−δ ·W (0))] = 1,

where the last equality follows from the boundedness of δ. Hence, Z(δ) is
a (true) martingale and can be used as a density of a probability measure

Q(δ) ∈ M.
To proceed, we fix t0 ∈ (0, T ) and a ∈ R and define

δ
(a)
t := 1

T−t0 (Wt01{|Wt0 |≤1/(T−t0)} − a)1{t≥t0}, t ∈ [t0, T ],

W
(a)
t := Wt +

∫ t

0
(ν(0)u + δ(a)u ) du, t ∈ [0, T ].

Then we have

WT − a =W
(a)
T −W

(a)
t0 −

∫ T

t0

ν(0)u du+Wt01{|Wt0 |>1/(T−t0)}.

The processW (a) is aQ(a)-Brownian motion, whereQ(a) is a short for Q(δ(a)).
Therefore, the bound |ν(0)| ≤ f implies that

EQ(a)[|WT − a|
∣

∣Ft0
]

≤ C(t0)

where

C(t0) :=

√

2(T−t0)
π +

∫ T

t0

fu du+ |Wt0 |1{|Wt0 |>1/(T−t0)}.
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With Lϕ denoting the Lipschitz constant of ϕ, we have

|EQ(a)
[ϕ(WT )|Ft0 ]− ϕ(a)| ≤ Lϕ E

Q(a)
[|WT − a||Ft0 ] ≤ LϕC(t0).

Therefore,

lim sup
t0րT

esssup
Q∈M

EQ[ϕ(WT )|Ft0 ] ≥ lim sup
t0րT

EQ(a)
[ϕ(WT )|Ft0 ]

≥ lim sup
t0րT

(

ϕ(a) − LϕC(t0)
)

= ϕ(a).

It remains to note that the left-hand side above does not depend on a and
that supa ϕ(a) is a trivial upper bound in (7.3). �

Example 7.5. (Continuation of Example 7.3) We continue Example 7.3 by
examining two cases in which Lemma 7.4 applies. In the first one we simply
take f := 0. That can be done if and only if the minimal martingale density
E(−λ · B) defines a martingale which is the case in many popular models
including the incomplete models developed in [25] and [20].

In the second case, E(−λ · B) is a strict local martingale but NFLVR
nevertheless still holds. A famous example of a model where this occurs is
given in [11]. We present here a time-changed version (using the standard
logarithmic time transform t 7→ − log(1− t)), as the original version in [11]
is defined on an infinite horizon. In the notation of Example 7.3, and with
T = 1, we define the local martingales (β′t)t∈[0,1) and (W ′

t)t∈[0,1) by

β′t :=
∫ t

0

1√
1−u dβu and W ′

t :=

∫ t

0

1√
1−u dWu, t ∈ [0, 1),

as well as the stopping times

τ := inf{t > 0 : E(β′) = 1/2} and σ := inf{t > 0 : E(W ′) = 2}.

With the processes (λt)t∈[0,1] and (ν
(0)
t )t∈[0,1] given by

λt := −1σ∧τ (t)√
1− t

, ν
(0)
t := −1σ∧τ (t)√

1− t
,

it remains to apply the results of [11] to conclude that the NFLVR condition
is satisfied, but that the minimal martingale density E(−λ·β) is a strict local

martingale. Our Lemma 7.4 applies because |ν(0)t | ≤ 1√
1−t ∈ L1([0, 1]).

We conclude the by mentioning that Examples 7.3 and 7.5, as well as
Lemma 7.4 will be used again in the examples in Section 8. �

The next example shows that it is quite easy to construct bounded payoffs
ψ which fail to be uniquely superreplicable.

Example 7.6. We consider the following one period model with three
states:

∆S := (1, 0,−1)′, ψ := (−1, 0,−1)′.

The set of pairs (x, π) for which x+π∆S ≥ ψ is given by x ≥ 0 and π ∈ [−1−
x, 1+ x]. However, the corresponding set of gain outcomes (x+π, x, x− π)′
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with x ≥ 0 and π ∈ [−1 − x, 1 + x] does not contain a smallest element.
Indeed, if (a, b, c) is a smallest element, we would have a ≤ −1, b ≤ 0, and
c ≤ −1 but such an element (a, b, c) is not the outcome of any gains process
x+ π∆S with x ≥ 0 and π ∈ [−1− x, 1 + x]. �

The main technical result of this section is the following proposition:

Proposition 7.7. Under Assumption 6.3, suppose that −B and −(B+ εϕ)
are uniquely superreplicable by −B and −(B + εϕ), respectively, for all ε > 0

in some neighborhood of 0. Then, for each µ̂ ∈ D̂(B), we have

lim
εց0

1
ε

(

U(B + εϕ) − U(B)
)

= E[Ŷ ϕ] + lim
εց0

1
ε

〈

µ̂s, B + εϕ−B
〉

,(7.4)

where Ŷ = dµ̂r

dP .

Proof. For ε > 0 we let xε, x0 ∈ R and πε, π0 ∈ A ∩ (−A) be such that

B + εϕ = εxε + ε (πε · S)T and B = x0 + (π0 · S)T .
Because B is bounded away from zero and ϕ ∈ L∞(P) we can consider ε > 0
so small that xε, x0 > 0. For δ ∈ ∆ε(ϕ) we have εδ + π̂ ∈ A and

ε(δ · S)T + (π̂ · S)T ≥ −εϕ−B.

Therefore, by the unique superreplicability of B + εϕ, we have

0 ≤ xε + (δ · S)T + 1
ε (π̂ · S)T + (πε · S)T .(7.5)

Since B uniquely superreplicates B we have B + (π̂ · S)T ≥ 0. Therefore,

for any µ̂ ∈ D̂(B), the first part of Equation (4.7) in [6] produces

0 ≤ 〈µ̂s, B + (π̂ · S)T 〉 ≤ 〈µ̂s, B + (π̂ · S)T 〉 = 0.(7.6)

The second part of Equation (4.7) in [6] ensures 〈µ̂, (π̂ · S)T 〉 = 0 and com-
bining this with 〈µ̂s, B + (π̂ · S)T 〉 = 0 we see

〈µ̂r, B + (π̂ · S)T 〉 = 〈µ̂, B + (π̂ · S)T 〉
= 〈µ̂, B〉.

Because Ŷ = dµ̂r

dP we obtain the representation

E[Ŷ (π̂ · S)T ] = 〈µ̂s, B〉.(7.7)

The property εδ + π̂ ∈ A produces 〈µ̂, ε(δ · S)T + (π̂ · S)T 〉 ≤ 0 and
〈µ̂, (πε · S)T 〉 = 0, for each ε > 0. Therefore, by (7.5), we find

E[Ŷ (xε + (πε · S)T + (δ · S)T + 1
ε (π̂ · S)T )]

≤ 〈µ̂, xε + (πε · S)T + (δ · S)T + 1
ε (π̂ · S)T 〉

≤ 〈µ̂, xε〉.
(7.8)

To show that the upper bound in (7.8) above is attained we pick

δε = (xεx0 − 1
ε )π̂ + xε

x0
π0 − πε.(7.9)
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Because xε > 0 and x0 > 0 one can check that δε ∈ ∆ε(ϕ). Then we have

E[Ŷ (xε + (πε · S)T + (δε · S)T + 1
ε (π̂ · S)T )]

= E[Ŷ (xε +
xε
x0

((π̂ + π0) · S)T )]
= xε

x0
E[Ŷ (B + (π̂ · S)T )]

= xε
x0
〈µ̂, B + (π̂ · S)T 〉

= 〈µ̂, xε〉,
where the last equality follows from 〈µ̂, B〉 = 〈µ̂, x0〉 and 〈µ̂, (π̂ · S)T 〉 = 0.
Therefore, δε indeed attains the upper bound of (7.8), and, so,

sup
δ∈∆ε(ϕ)

E[Ŷ ((δ · S)T + ϕ)] =

= 〈µ̂, xε〉 − 1
εE[Ŷ (B + εϕ)]− 1

εE[Ŷ (π̂ · S)T ] + E[Ŷ ϕ]

= 〈µ̂r, ϕ〉 + 1
ε 〈µ̂s, B + εϕ−B〉.

The sets ∆ε(ϕ) monotonically increase to ∆(ϕ) as ǫ ց 0. This implies

sup
δ∈∆ε(ϕ)

E[Ŷ ((δ · S)T + ϕ)] ր sup
δ∈∆(ϕ)

E[Ŷ ((δ · S)T + ϕ)](7.10)

as εց 0. Because the left-hand-side of (7.10) equals 〈µ̂r, ϕ〉+ 1
ε 〈µ̂s, B + εϕ−

B〉, we see that (7.4) holds by Proposition 6.5. �

A first consequence of Proposition 7.7 is that the situation encountered
in Example 6.1 cannot happen if −B if uniquely superreplicable. Indeed,
the primal value function U is then smooth in all replicable directions:

Corollary 7.8. Suppose that Assumption 6.3 holds, that −B is uniquely
superreplicable and that ϕ is replicable. Then the following two-sided limit
exists

lim
ε→0

1
ε

(

U(B + εϕ)− U(B)
)

= 〈µ̂, ϕ〉 for each µ̂ ∈ D̂(B).(7.11)

In particular, there exists a constant yB > 0 such that

yB = µ̂(Ω) for each µ̂ ∈ D̂(B).

Proof. First observe that for replicable ϕ we have B + εϕ = B + εϕ. Then
we can apply Proposition 7.7 to both ϕ and −ϕ to see (7.11). The last claim
follows by setting ϕ = 1. �

Now that we know that all dual minimizers µ̂ ∈ D̂(B) have the same total
mass, the following result follows directly from Corollary 5.2 above.

Corollary 7.9. Suppose that Assumption 6.3 holds and that −B is uniquely
superreplicable. Then each replicable ϕ ∈ L∞(P) has the unique B-condi-
tionally Davis price 〈µ̂, ϕ〉/µ̂(Ω).
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When B is a constant (and more generally, when B is replicable), it is
known that the product of the primal and dual optimizers is a martingale
(see, e.g., the discussion on p.911-2 in [22]). When the dual optimizer is only
a finitely-additive measure, the following corollary may serve as a surrogate.
The result relies on [19] where a positive supermartingale deflator {Ŷt}t∈[0,T ]
is constructed from µ̂ ∈ D̂(B) (see Equation 2.5 in [19]).

Corollary 7.10. Suppose that Assumption 6.3 holds, that −B is uniquely
superreplicable by −B, and write

B = x0 + (π0 · S)T .
Then the process

Ŷt

(

x0 +
(

(π0 + π̂) · S
)

t

)

, t ∈ [0, T ],

is a nonnegative martingale where {Ŷt}t∈[0,T ] is the supermartingale deflator

corresponding to µ̂ ∈ D̂(B).

Proof. From Theorem 2.10 in [19] we know that the process in question
is a nonnegative supermartingale. Furthermore, also from [19], we have

ŶT = dµr

dP and Ŷ0 ≤ µ̂(Ω). To obtain the constant expectation property we
use (7.6) to get

〈µ̂, x0〉 = 〈µ̂, (π̂ · S)T +B〉 = 〈µ̂r, (π̂ · S)T +B〉

= E

[

ŶT
(

(π̂ · S)T +B
)

]

≤ Ŷ0x0 ≤ µ̂(Ω)x0,

and the claimed martingale property follows. �

8. The interval of Conditional Davis prices

This section closes the loop and gives an explicit expression for the interval
of conditional Davis prices under the assumption of unique superreplicabil-
ity. We start with a standard characterization of conditional Davis prices
in terms of perturbed value functions. Given B ∈ L∞

++ and ϕ ∈ L∞ (we do
not impose any unique superreplicability assumption on either, yet). We let
the function u : R2 → [−∞,∞) be defined by

u(ε, x) := U(B + x+ εϕ),

and let its supergradient at (0, 0) be denoted by ∂u(0, 0).

Lemma 8.1. Let ϕ ∈ L∞. If (0, 0) ∈ ∂u(0, 0), then P (ϕ|B) = R. Other-
wise,

P (ϕ|B) = {δ/y : y 6= 0, (δ, y) ∈ ∂u(0, 0)}.
Proof. Thanks to the assumption that B ∈ L∞

++, u is concave and finite-
valued in some neighborhood of (0, 0). Moreover Definition 3.4 translates
into the following statement:

p ∈ P (ϕ|B) if and only if u(0, 0) ≥ u(ε,−εp) for all ε.
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By concavity, this is equivalent to the nonpositivity of the directional deriv-
ative of u, at (0, 0) in the directions (−1, p) and (1,−p), i.e.

inf
(δ,y)∈∂u(0,0)

−δ + py ≤ 0 and inf
(δ,y)∈∂u(0,0)

δ − py ≤ 0.

By the convexity of the supergradient, this is equivalent to existence of a
pair (δ, y) ∈ ∂u(0, 0) such that py = δ. �

Theorem 8.2. Suppose that Assumption 6.3 holds and that −B and −(B+
εϕ) are uniquely superreplicable by −B and −(B + εϕ), respectively, for all
ε in some neighborhood of 0. The interval of B-Davis prices of ϕ is given
by

1
yB

E[Ŷ ϕ] + 1
yB

[

lim
εց0

1
ε

〈

µ̂s, B + εϕ−B
〉

, lim
εր0

1
ε

〈

µ̂s, B + εϕ−B
〉]

,(8.1)

where yB is the common value of µ̂(Ω) for all µ̂ ∈ D̂(B).

Proof. By Corollary 7.8, the function u is differentiable in x at x = 0,
with derivative yB . The interval of B-conditional Davis prices, according to
Lemma 8.1, is given by

1
yB

[∂ε+u(0, 0), ∂ε−u(0, 0)].

This, in turn, coincides with the expression in (8.1) thanks to Proposition
7.7. �

8.1. Two illustrative examples. We conclude by giving two illustrative
examples, both in an incomplete Brownian setting, of situations where our
results can be applied directly and lead to explicit formulas for the non-
trivial interval of conditional Davis prices.

Let (Ω,F ,P) be a probability space supporting two independent Brownian
motions (Z,W ) and we let {Ft}t∈[0,T ] be their augmented filtration up to
some maturity T > 0. The set of all pathwise p-integrable predictable
processes is denoted by Lp and the space finitely-additive measures which
are P-absolutely continuous is denoted ba(P) so that ba(P) can be identified
with L∞(P)′.

In both examples, the stock-price dynamics are given by a one-dimensional
Itô process

dSt := Stσt
(

λtdt+ dZt
)

, S0 > 0,(8.2)

with processes σ, λ ∈ L2. With more driving Brownian motions than assets,
this leads to a incomplete financial market. Both examples will feature (an
unspanned) contingent claim paying out ϕ(WT ) at time T , where ϕ : R → R

is a non-constant, bounded, and continuous function.
The major difference between the examples is that in the first example

the illiquid random endowment degenerates (B := x for a constant x > 0),
while in the second example the random endowment B is non-replicable.
The first example illustrates that even when B := x > 0 is constant, our
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setting differs from that of [23] because the corresponding Davis prices are
non-unique whereas the growth condition placed on the claim’s payoff in
[23] always produces unique Davis prices (the growth condition used in [23]
originates from [16]). In other words, the payoffs considered in the first
example are not included in [23]. The second example backs up the claim
we made in both the abstract and in the introduction: When the endowment
B is non-replicable, the generic case is that Davis prices are non-unique.

8.1.1. Example 1. We adopt the setting used in Example 7.3 above which
is based on [11]. The endowment is taken to be B := x > 0 constant. It
follows from Example 7.3 that the interval of arbitrage-free prices for ϕ(WT )
is given by (ϕ,ϕ) where

ϕ := inf
a∈R

ϕ(a), ϕ := sup
a∈R

ϕ(a).(8.3)

Our Theorem 8.2 with B := x > 0 constant shows that the interval of
log-investor’s Davis’ prices for ϕ(WT ) is given by [p, p] where

p := 1
Ŷ0
E[ŶT (ϕ− ϕ)] + ϕ, p := ϕ− 1

Ŷ0
E[ŶT (ϕ− ϕ)].

Therefore, since the function ϕ is not constant, we have

p− p = (ϕ− ϕ)(1− E[ŶT ]/Ŷ0) > 0.

8.1.2. Example 2. In this example, we consider the Samuelson-model setting
used in Section 2 in [27] where the stock price dynamics are given by (8.2)

with both σt := σ > 0 and λt := λ > 0 being constants. Let U(ξ) := ξγ

γ ,

ξ > 0, γ < 1, be a utility function in the “power” family, with constant
relative risk-aversion parameter (as usual γ := 0 is interpreted as the log
investor).

The investor receives the random endowment of the form B(WT ) at time
T > 0, where B is a non-constant, bounded and continuous function. The
payoff ϕ whose B-conditional Davis prices we are computing, as well as the
quantities ϕ and ϕ are defined exactly as in Example 1 above. We also
define the following quantities

B(ε) := inf
a∈R

(

B(a) + εϕ(a)
)

, B(ε) := sup
a∈R

(

εϕ(a)−B(a)
)

, ε ≥ 0.

Proposition 2.4 in [27] states that the dual optimizer Q̂ ∈ ba(P) for
the utility-maximization problem with the random endowment of the form
B(WT ) has a non-trivial singular part in the Yosida-Hewitt decomposition

Q̂ = Q̂r+Q̂s after a possible shift of the function B by a constant. Moreover,
such a shift can always be arranged so as to keep the values of B positive
and bounded away from 0. Therefore, we assume, without loss of generality
that such a shift has already been performed, so that, in particular, we have
B(0) > 0. This loss-of-mass property for Q̂r can be partially quantified as
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follows: Theorem 3.7 in [13] and Proposition 3.2 in [29] allow us to write
dQ̂r

dP = ŶT where

dŶt = −Ŷt
(µ
σdZt + ν̂tdWt

)

, Ŷ0 > 0,

for some process ν̂ ∈ L2. The presence of the non-trivial singular part Q̂s

implies that Ŷ is a strict local martingale, i.e., E[ŶT ] < Ŷ0.
Example 7.3 takes care of the conditions of Theorem 8.2 dealing with

unique superreplicability. Indeed, both −B and −(B + εϕ) are of the
form treated there, and are, therefore, uniquely superreplicable by −B and
−B(ε), respectively, for ε ≥ 0.

The last step before Theorem 8.2 is applied is to simplify the two ε-limits
appearing in (8.1). That is an easy task thanks to the fact that the random
variable 1

ε

(

B + εϕ−B
)

is constant and equal to 1
ε

(

B(ε)−B(0)
)

. Theorem
8.2 guarantees that this quotient admits a left and a right limit at ε = 0 and
we introduce the following notation

B′(0+) := lim
εց0

1
ε

(

B(ε) −B(0)
)

and B′(0−) := lim
εր0

1
ε

(

B(ε)−B(0)
)

.

The total mass in Q̂s is given by Ŷ0 −E[ŶT ], and, so the interval of B(WT )-
conditional Davis prices for the payoff ϕ(WT ) is given by [p, p] where

p := 1
Ŷ0
E

[

ŶT
(

ϕ(WT )−B′(0+)
)

]

+B′(0+),

p := B
′
(0+)− 1

Ŷ0
E

[

ŶT
(

B
′
(0+)− ϕ(WT )

)

]

.

8.1.3. Linear Approximation. We close the paper with a result which com-
plements the pricing formula of the previous two examples with some as-
ymptotic hedging information. More precisely, we provide two first-order
approximations to the primal utility maximizer in the Brownian setting
used above. We focus on the right limit (ε ց 0), as one gets the left-limit
corrector by applying the result to −ϕ. As a preparation, we note that the
function B is concave and that its right derivative B′(0+) at 0 satisfies

|B′(0+)| ≤ sup
a∈R

|ϕ(a)|,

and remind the reader that both B and ϕ are normalized so that B(0) >
0. As always, π̂ denotes the primal optimizer for the utility-maximization
problem with the random endowment B = B(WT ) and Ŷ is the common
regular part of all dual optimizers.

Proposition 8.3. In the setting described in the beginning of subsection
8.1, and under Assumption 6.3, the process

(1 + εB
′(0+)
B(0) )π̂

is first-order optimal in the sense that

U
(

B + εϕ(WT )
)

− E

[

U
(

(

1 + εB
′(0+)
B(0)

)

(π̂ · S
)

T
+B + εϕ(WT )

)]

= o(ε)
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as εց 0.

Proof. We base the proof on the abstract expression (7.4) for the right de-
rivative of the value function of Proposition 7.7.

We let δε be defined by (7.9) in the proof of Proposition 7.7, which thanks
to Example 7.3, takes the simple form

δεt :=
1

B(0)

B(ε)−B(0)

ε
π̂t.

Then we have

sup
δ∈∆(ϕ)

E[Ŷ (δ · S)T ] = lim
εց0

E

[

Ŷ (δε · S)T
]

= B′(0+)
B(0) E

[

Ŷ (π̂ · S)T
]

= B′(0+)µ̂s(Ω),

where the last equality uses (7.7). We can then re-purpose the proof of
Proposition 6.5 to see that

E

[

U
(

(

1 + εB
′(0+)
B(0)

)

(π̂ · S
)

T
+B + εϕ

(

WT

)

)]

− U
(

B
)

− ε∆ = o(ε),

as εց 0 where we have defined

∆ : = E[Ŷ ϕ] +B′(0+)µ̂s(Ω).

It remains to apply the triangle inequality and Proposition 7.7. �
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