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Abstract

Aggregate investment accounts for much of the decline in GDP during recessions, making

investment stimulus a key element of countercyclical policy. However, existing models used to

study these issues are jointly inconsistent with two basic facts about investment over the cycle:

micro-level investment largely occurs along the extensive margin, and the real interest rate

covaries slightly negatively with aggregate productivity. I build a dynamic general equilibrium

model which captures these two facts, and show that they have important implications for

business cycles and countercyclical policy. First, aggregate investment is more responsive to

productivity shocks in expansions than in recessions, because in expansions more firms are

likely to make an extensive margin investment. Second, the policy multiplier is also state

dependent, declining substantially in recessions. Third, a simple size-dependent policy, which

targets extensive margin investment, is five times more cost effective than existing policies.
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1 Introduction

Aggregate investment is one of the most volatile components of GDP over the business cycle,

accounting for 38% of the decline in GDP during recessions.1 Measures to stimulate investment

are therefore a key element of countercyclical policy. For example, following the recent crisis,

Congress enacted two investment stimulus policies: raising the Section 179 cutoff, which targeted

small firms, and the Bonus Depreciation Allowance, which applied to all firms. At its peak, the

Bonus Depreciation Allowance was estimated to cost up to $100 billion per year in foregone tax

revenue.2

To evaluate these policies and design more cost effective ones, we need a model which is con-

sistent with the central role of aggregate investment in propagating business cycle shocks. The

predictions of such a model generically rely on two effects: the direct effect of a shock on individual

investment decisions, and the general equilibrium effect on prices. However, existing models in

the literature are jointly inconsistent with basic facts about these two effects. First, individual

investment decisions are “lumpy,” i.e., occur largely along the extensive margin. For example,

Gourio & Kashyap (2007) find that most of the variation in manufacturing investment is due to

variation in the number of firms investing. Second, the real interest rate comoves slightly negatively

with aggregate productivity, whereas most models predict a highly positive comovement. Taken

together, this points to a troubling gap in the literature, since the two effects jointly determine how

investment responds to both business cycle and policy shocks.

I fill this gap in the literature by building a dynamic general equilibrium model which matches

both the lumpiness of investment in the micro data and the real interest rate dynamics in the

macro data. I first use the model to analyze business cycle fluctuations, and find that aggregate

investment responds more to productivity shocks in expansions than in recessions. This happens

because in expansions more firms are likely to make an extensive margin investment. I confirm this

prediction in the data by showing that my model matches the procyclical volatility in the aggregate

investment rate time series. I then introduce investment stimulus policy into the model and show

1Computed as the average contribution to percentage change in GDP 1953-2012, using BEA Table 1.1.2 during
NBER recession dates.

2Computed as the forgone tax revenue for the fiscal years 2011 and 2012 with respect to 100% bonus depreciation,
estimated by the White House in http://www.whitehouse.gov/sites/default/files/fact_sheet_expensing_9-8-10.pdf.
However, the estimated cost over ten years is only $30 billion, reflecting the fact that the bonus defers tax payments
to the future.
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that aggregate investment responds less to the policy in recessions, when few firms are close to

investing. Predictions which ignore this force are therefore biased upward in recessions. Finally,

I develop a simple size-dependent policy which generates five times more investment than existing

policies, at the same cost. The source of these cost savings is targeting firms who are likely to

make an extensive margin investment in response to the policy.

In order to emphasize the contribution of lumpy investment and realistic interest rate dynamics,

my model is a direct extension of a benchmark real business cycle framework.3 Specifically, to

generate lumpy investment, I assume a fixed mass of heterogeneous firms who make investment

decisions subject to convex and nonconvex adjustment costs. To generate realistic interest rate

dynamics, I also assume habit formation over consumption in the household’s preferences. I then

calibrate these new ingredients to reproduce key features of lumpy investment and real interest rate

dynamics in the data.

Quantitatively, the calibrated model predicts that the response of aggregate investment to a

positive productivity shock is nearly 40% lower in a severe recession than in a similarly extreme

expansion. This state dependence is in sharp contrast to linear models — including both the

benchmark real business cycle model and its New Keynesian relatives —which instead predict that

the impulse response does not vary over the cycle. I argue that my model is a better description

of the data because it matches the procyclical volatility of the investment rate time series recently

documented by Bachmann, Caballero, & Engel (2013). In my model, this procyclical volatility

reflects the procyclical responsiveness of aggregate investment to shocks.

Both lumpy investment and realistic interest rate dynamics are crucial to generating these state

dependent impulse responses. Lumpy investment is the source of the state dependence because it

implies that the impulse response depends on the mass of firms close to investing. But realistic

interest rate dynamics are also important because they overturn an important irrelevance result

due to Khan & Thomas (2008). In particular, Khan & Thomas (2008) show that when lumpy

investment is embedded into an otherwise standard real business cycle model, highly procyclical

movements in the real interest rate eliminate most of the state dependence. However, this mecha-

3Although this choice facilitates comparison to the existing literature, the basic economic arguments carry through
to other settings as well. As I will show, the key implication of these features is to create aggregate nonlinearities,
which distinguishes my framework from both the real business cycle literature and the New Keynesian DSGE litera-
ture.
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nism is inconsistent with the fact that in the data, the real interest rate is mildly countercyclical.

Thus, matching the dynamics of the real interest rate is crucial for understanding the aggregate

implications of lumpy investment.

Before analyzing the effect of stimulus policy on aggregate investment, I show that the model

matches the effect on firm-level investment measured in the data. In particular, I reproduce results

from a recent paper by Zwick & Mahon (2014), who study the Bonus Depreciation Allowance in

the last two recessions. Their identification strategy exploits variation in the exposure of firms to

the bonus through a difference in differences design. I reproduce this variation in my model and

find that the resulting difference in differences coeffi cient is within one standard error of Zwick &

Mahon (2014)’s estimate. Lumpy investment is crucial to the model’s fit; without it, the coeffi cient

falls to nearly one half of the data’s estimate.

The model predicts that the aggregate effect of stimulus policy is also state dependent, declining

by more than 20% in severe recessions.4 More generally, the extent of this decline is determined

by the severity of the recession. Hence, forecasts based on policy multipliers which do not take

this state dependence into account will overstate the effect of stimulus policy in recessions, with

the size of the bias increasing in the severity of the recession. Such multipliers are routinely used

to forecast the effect of investment stimulus policies, for example by Romer & Bernstein (2009) to

predict the effect of the American Reinvestment and Recovery Act.

Finally, I use the model to learn how to improve the cost effectiveness of investment stimulus

policies. Most of the cost of existing policies comes from subsidizing inframarginal investment that

would have been done even without the policy. In my model, the total amount of this inframarginal

investment is mainly determined by the number of firms who would make an extensive margin

adjustment without the policy. Therefore, a promising way to increase cost effectiveness is to

avoid subsidizing such firms, and instead concentrate on firms who would not make an adjustment

without the policy. I implement this idea with a simple size-dependent subsidy which generates

five times more investment than existing policies, at the same cost. My proposal avoids subsidizing

small firms because they grow faster than average, and therefore invest more without the subsidy.

4The policy analysis in this paper is purely positive; I assume that policymakers want to stimulate investment,
and study the effect of policies designed to do so. More fully characterizing the normative implications of these
policies would require specifying the market failure they address, such as an aggregate demand externality. The
results presented here are an important input into this exercise.
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More generally, I argue that targeting extensive margin adjustment is a powerful way to increase

the cost effectiveness of investment stimulus policies.

A key challenge in my analysis is effi ciently solving the model, which is diffi cult because the

distribution of firms is part of the aggregate state vector. The standard approach, following Krusell

& Smith (1998), approximates this distribution with a small number of moments, typically just the

mean. However, this approach breaks down in my model because the response to an aggregate

shock depends on the distribution of firms relative to their adjustment thresholds; two distributions

may have the same mean, but a different number of firms close to adjusting. Adding more moments

to capture this feature is not feasible due to the curse of dimensionality.

To overcome this challenge, I develop a solution method which includes the entire distribution

in the state vector by approximating it with a flexible parametric family. In practice, the number

of required parameters may be large and still subject to the curse of dimensionality. To get around

this, I follow Reiter (2009) and implement a mixed globally and locally accurate approximation.

In particular, I only solve for locally accurate dynamics of the aggregate state vector, and can

therefore handle many parameters describing the distribution. Implementing this mixed approach

relies crucially on parameterizing the distribution, and cannot be used to overcome the curse of

dimensionality in Krusell & Smith (1998).

Related Literature My paper relates to four main strands of literature. First, it contributes

to a long-standing debate about the implications of micro-level lumpy investment for aggregate

dynamics. On one side of the debate, papers working in partial equilibrium find that lumpy in-

vestment generates state dependence, as in my model; see, for example Bertola & Caballero (1994),

Caballero & Engel (1993, 1999), Caballero, Engel, & Haltiwanger (1995), or Cooper, Haltiwanger,

& Power (1999). On the other side of the debate, papers which endogenize prices in an otherwise

standard real business cycle framework find that this state dependence disappears; see, for exam-

ple, Veracierto (2002), Thomas (2002), or Khan & Thomas (2003, 2008). This important series

of irrelevance results highlights the central role of general equilibrium in determining the impact

of lumpy investment on aggregate dynamics.5 However, the particular general equilibrium model

5 In this spirit, House (2008) argues that, even with fixed costs, the limiting case of no capital depreciation implies
the intertemporal elasticity of investment timing is infinite. In this case, general equilibrium price movements imply
that aggregate investment is independent of the distribution of investment across firms.
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they use predicts a highly procyclical real interest rate, which is at odds with the data. I show

that when these interest rate dynamics are corrected, the irrelevance results no longer hold.6

Second, to match the dynamics of the interest rate, I follow Beaudry & Guay (1996) in including

habit formation and convex capital adjustment costs. These features have also been successful in

matching asset prices in models with production, as in Jermann (1998) or Boldrin, Christiano, &

Fisher (2001). However, all of these papers assume a representative firm, and calibrate the amount

of adjustment costs faced by this representative firm to match prices. It is ex ante unclear whether

these calibrated adjustment costs are consistent with the micro investment data. I show that the

adjustment costs necessary to match real interest rate dynamics are indeed consistent with the

micro data.

Third, my paper also contributes to a large literature which studies investment stimulus policy.

On the empirical side, many papers estimate the effect of policy through traditional user cost or

tax-adjusted q models; see for example, Hall & Jorgensen (1967) or Cummins et. al. (1994, 1995).

Zwick & Mahon (2014) take a slightly different approach and instead implement a simple difference

in differences regression. I connect with this empirical literature by replicating Zwick & Mahon

(2014)’s regression on data simulated from my model. On the theoretical side, Edge & Rudd

(2011) incorporate investment stimulus policy into a nearly linear New Keynesian model. Hence,

they predict a constant multiplier and rule out micro-targeted policies by construction. House &

Shaprio (2008) present an empirical and theoretical study of the Bonus Depreciation Allowance,

but also do not focus on the implications of lumpy investment for the aggregate effects.7

Finally, my solution method builds heavily on two key papers in the computational literature.

First, I follow Reiter (2009) in using a mixed globally and locally accurate approximation scheme.

However, Reiter (2009) approximates the distribution with a fine histogram, which requires many

6Other papers challenge these irrelevance results on other grounds; see, for example, Gourio & Kashyap (2007),
Bachmann, Caballero, & Engel (2013), or Bachmann & Ma (2012). However, none of these papers emphasize the
importance of interest rate dynamics.
Bridging the gap between the partial and general equilibrium approaches, Cooper & Willis (2014) parameterize

an interest rate process from the data, feed it into a firm-level model of lumpy investment, and show that this
also overturns the irrelevance results. My paper produces such an interest rate process endogenously in general
equilibrium.

7Berger & Vavra (2014) analyze a related class of policies meant to stimulate consumer durable investment. In
a model of lumpy durable investment, they find that stimulus policies are less effective in recessions, for the same
reason that I argue here. However, they focus on more detailed features of the micro data, whereas I emphasize the
importance of interest rate dynamics in aggregation. Furthermore, they do not focus on the design of more cost
effective policies.
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parameters. My method instead approximates the distribution with a parametric family, which

requires far less parameters and is more easily extended to higher dimensional problems. Second,

my method builds on Algan et al (2008), who approximate the distribution with a parametric

family. However, Algan et al (2008) implement a fully global approximation, which is slow for

small problems and infeasible for larger ones.

Road Map The rest of my paper is organized as follows. In Section 2, I describe the model

and the solution method. I then calibrate the model in Section 3. In Section 4, I document the

state dependent impulse responses and show that my model matches the procyclical volatility of

aggregate investment rates in the data. In Section 5, I introduce stimulus policy into the model,

show that the policy multiplier is state dependent, and develop my micro-targeting proposal. I

then conclude in Section 6.

2 Model

In this section, I extend the benchmark real business cycle model to incorporate lumpy investment

and realistic real interest rate dynamics.

2.1 Environment

The model is a version of the neoclassical growth model in discrete time.

Firms There is a fixed mass of firms j ∈ [0, 1] who produce output yjt using the production

function

yjt = ezteεjtkθjtn
ν
jt, θ + ν < 1

where zt and εjt are productivity shocks, kjt is capital, njt is labor, and θ and ν are parameters.

Production is decreasing returns to scale to ensure that the size distribution of firms is not generate,

even without adjustment costs. zt is an aggregate shock, which is common to all firms and drives

business cycle fluctuations. It follows the AR(1) process

zt+1 = ρzzt + ωzt+1, where ω
z
t+1 ∼ N(0, σ2z).
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εjt is an idiosyncratic shock, which generates heterogeneity in investment patterns across firms and

time. It is independent across firms, but within firm follows the AR(1) process

εjt+1 = ρεεjt + ωεjt+1, where ω
ε
jt+1 ∼ N(0, σ2ε).

Each period, a firm j observes these two shocks, uses its pre-existing capital stock, hires labor from

a competitive market, and produces output.

After production, the firm decides how much capital to invest in for the next period. Gross

investment of firm j in period t, ijt, yields kjt+1 = (1− δ)kjt + ijt units of capital in period t+ 1.

This investment is subject to two capital adjustment costs. First, if ijt /∈ [−akjt, akjt], the firm

must pay a fixed cost ξjt in units of labor, which generates an extensive margin decision for the

firm. The parameter a captures the idea that small maintenance investments do not incur the fixed

cost. The fixed cost ξjt is a random variable distributed uniformly over
[
0, ξ
]
, and is independent

across firms and over time. The second adjustment cost is −φ
2

(
ijt
kjt

)2
kjt in units of output, which

captures costs which are increasing in the amount of investment.

After production and investment, the firm pays a linear tax τ on its revenue yjt, net of two

deductions. First, the firm deducts its labor costs wtnjt, where wt is the wage in period t. Second,

it deducts capital depreciation costs according to the following geometric schedule. The firm enters

the period with a pre-existing stock of depreciation allowances, djt. It writes off a constant fraction

δ̂ of this stock djt, as well as the same fraction δ̂ of new investment, ijt. The remaining portion is

then carried into the next period, so that dj+1 = (1− δ̂) (djt + ijt). In total, the tax bill in period

t is

τ ×
(
yjt − wtnjt − δ̂ (djt + ijt)

)
.

I include the tax code to later analyze investment stimulus policy, which works through increasing

the writeoff for new investment.

Households There is a representative household with the utility function

E
∞∑
t=0

βt

(
Ct −Ht − χN

1+α
t
1+α

)1−σ
− 1

1− σ ,
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where Ct is consumption, Ht is habit stock, and Nt is labor supplied to the market. I define

the habit stock Ht to capture the idea that utility over current consumption is judged relative

to an average of past consumption. Specifically, I first define the surplus consumption ratio as

St = Ct−Ht
Ct

, and then define the law of motion for St as

logSt+1 = (1− ρs) logS + ρs logSt + λ log

(
Ct+1
Ct

)
, (1)

which implies that current habit is a geometric average of past consumption.8 I assume that the

household does not take into account the fact that their choice of consumption impacts the habit

stock. The total time endowment per period is 1, so that Nt ∈ [0, 1]. The household owns all the

firms in the economy, receives a lump sum transfer payment from the government, and markets are

complete.

These preferences allow the model to match key features of real interest rate dynamics in the

data. With standard CRRA preferences, the interest rate would be too highly correlated with

output and not volatile enough. Habit formation overcomes these problems through the implied

dynamics of the intertemporal marginal rate of substitution. However, with standard Cobb-Douglas

or additively separable preferences over labor supply, this countercyclical interest rate would imply

countercyclical hours worked. The form of labor supply here overcomes this by eliminating the

wealth effect on labor supply. The form of the labor supply term used here eliminates this wealth

effect, as introduced by Greenwood, Hurcowitz, & Huffman (1988).9

Government The government collects the corporate profits tax and transfers the proceeds lump

sum to the household. In period t, this transfer is

Tt = τ
(
Yt − wtNt − δ̂ (Dt + It)

)
, (2)

where Yt is aggregate output, Nt aggregate labor input, Dt aggregate stock of depreciation al-

lowances, and It is aggregate investment.

8This approach was introduced by Campbell & Cochrane (1999), and subsequently used in the asset pricing
literature with production by Lettau & Uhlig (2001) and Chen (2014), among others.

9These preferences are a limiting case of a more general class of preferences introduced by Jaimovich and Rebelo
(2006).
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2.2 Firm Optimization

I characterize the optimization problem of a firm recursively. The firm’s individual state variables

are εjt, its current draw of the idiosyncratic productivity shock, kjt, its pre-existing stock of capital,

djt, its pre-existing stock of depreciation allowances, and ξjt, its current draw of the fixed cost.

The aggregate state vector is denoted st and determines prices which firms take as given. I

postpone discussion of the elements in st until Section 2.4, where I define the recursive competitive

equilibrium.

The firm’s value function, v(ε, k, d, ξ; s), solves the Bellman equation

v(ε, k, d, ξ; s) = τ δ̂d+max
n

{
(1− τ)

(
ezeεkθnν − w(s)n

)}
+max {va(ε, k, d; s)− ξw(s), vn(ε, k, d; s)} .

(3)

In (3) I have written the firm’s decision problem in two pieces. The first max operator represents the

optimal choice of labor, and the second max operator represents the optimal choice of investment.

Because the choice of labor is a purely static problem, these two choices are independent.

It is convenient to formulate the optimal investment problem conditional on whether the firm

pays the fixed cost. If the firm chooses to pay its fixed cost −ξw(s), it achieves the choice-specific

value function va(ε, k, d; s), defined by the Bellman equation:

va(ε, k, d; s) = max
i∈R
−
(

1− τ δ̂
)
i− φ

2

(
i

k

)2
k + E[Λ(z′; s)v(ε′, k′, d′, ξ′; s′)|ε, k, d; s] (4)

s.t. k′ = (1− δ)k + i and d′ =
(

1− δ̂
)

(d+ i) ,

where Λ(z′; s) is the stochastic discount factor. I call the implied capital stock, ka (ε, k, d; s) =

(1− δ) k+ ia (ε, k, d; s), the target capital stock because the firms would like to adjust to it absent

fixed costs.

If the firm chooses not to pay its fixed cost, it achieves the choice-specific value function

vn (ε, k, d; s), defined by the Bellman equation:

vn(ε, k, d; s) = max
i∈[−ak,ak]

−
(

1− τ δ̂
)
i− φ

2

(
i

k

)2
k + E[Λ(z′; s)v(ε′, k′, d′, ξ′; s′)|ε, k, d; s] (5)

s.t. k′ = (1− δ)k + i and d′ =
(

1− δ̂
)

(d+ i) .
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The only difference from the unconstrained Bellman equation (4) is that investment is constrained

to be in the set [−ak, ak]. I call the implied capital stock, kn (ε, k, d; s) = (1− δ) k + in (ε, k, d; s),

the constrained capital stock because firms face the constrained choice set [−ak, ak].

The firm will choose to pay the fixed cost if and only if the value from doing so is higher than

not paying the fixed cost, i.e., if and only if va(ε, k, d; s)−ξw(s) ≥ vn(ε, k, d; s). For each (ε, k, d; s),

there is a unique threshold ξ̂(ε, k, d; s) which makes the firm indifferent between these two options.

This threshold solves

ξ̂(ε, k, d; s) =
va(ε, k, d; s)− vn(ε, k, d; s)

w(s)
. (6)

For draws of the fixed cost ξ below ξ̂(ε, k, d; s), the firm pays the fixed cost; for draws of the

fixed cost above ξ̂(ε, k, d; s), it does not. This threshold is increasing in the “capital imbalance”

|ka(ε, k, d; s)− kn(ε, k, d; s)|, since the gain from adjusting is higher when the target capital stock

is further away from the constrained capital stock.

2.3 Household Optimization

Since there are no dynamic links in the household’s choices, the decision problem is equivalent to

the following static problem state by state:10

max
C,N

(
C −H − χN1+α

1+α

)1−σ
− 1

1− σ subject to C ≤ w(s)N + Π(s) + T (s). (7)

The household chooses consumption and labor supply to maximize its period utility, subject to the

budget constraint. Total expenditure is consumption C. Total income is labor income, w(s)N ,

profits from owning the firms Π(s), and the lump sum transfer from the government, T (s).

Because markets are complete, the stochastic discount factor used by firms equals the intertem-

poral marginal rate of substitution state by state:

Λ(z′; s) =

(
C(s′)× S(s′)− χN(s

′)1+α

1+α

)−σ
(
C(s)× S(s)− χN(s)1+α1+α

)−σ . (8)

10There are no dynamic links because investment is done by firms and the evolution of the habit stock is taken as
given.
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2.4 Recursive Competitive Equilibrium

To define the recursive competitive equilibrium, I use the aggregate state s = (z, S−1, C−1, µ),

where z is the aggregate productivity shock, S−1 the previous period’s surplus consumption ratio,

C−1 is previous period’s consumption, and µ is the distribution of firms over their individual state

vector (ε, k, d, ξ).

Definition 1 A Recursive Competitive Equilibrium for this economy is a list of functions

v(ε, k, d, ξ; s), n (ε, k, d, ξ; s), ia (ε, k, d; s), in (ε, k, d; s), ξ̂ (ε, k, d; s), C(s), N(s), T (s), w(s), Π(s),

Λ(z′; s), S′−1(s), C ′−1(s), and µ′(s) such that

1. (Household Optimization) Taking w(s), Π(s), and T (s) as given, C(s) and N(s) solve the

utility maximization problem (7).

2. (Firm Optimization) Taking w(s), Λ(z′; s), S′−1(s), C ′−1(s), and µ′(s) as given, v(ε, k, d, ξ; s),

n (ε, k, d, ξ; s), ia (ε, k, d, ξ; s), in (ε, k, d, ξ; s) and ξ̂ (ε, k, d; s) solve the firm’s maximization

problem (3) - (6).

3. (Government) For all s, T (s) is given by (2).

4. (Consistency) For all s,

(a) Π(s) =
∫

[ (1− τ) (ezeεkθn (ε, k, d, ξ; s)ν−w(s)n (ε, k, d, ξ; s)) + τ δ̂d −
(

1− τ δ̂
)
i(ε, k, d, ξ; s)

− φ
2

(
i(ε,k,d,ξ;s)

k

)2
k − ξw(s)1

{
i(ε,k,d,ξ;s)

k /∈ [−a, a]
}

] µ(dε, dk, dd, dξ), where i (ε, k, d, ξ; s)

= ia (ε, k, d, ξ; s) if ξ ≤ ξ̂ (ε, k, d; s) and i (ε, k, d, ξ; s) = in (ε, k, d, ξ; s) otherwise.

(b) Λ(z′; s) is given by (8).

(c) S′−1(s) follows (1).

(d) C ′−1(s) = C(s).

(e) For all measurable sets ∆ε×∆k ×∆d×∆ξ, µ′(∆ε×∆k ×∆d×∆ξ) =
∫
p(ε′ ∈ ∆ε|ε)dε′

× 1{ i(ε, k, d, ξ; s) + (1− δ)k ∈ ∆k } × 1{ (1− δ̂) (i(ε, k, d, ξ; s) + d) ∈ ∆d } × G(∆ξ)

× µ(dε, dk, dd, dξ), where G(ξ) is the CDF of ξ.

5. (Market Clearing) For all s, N(s) =
∫
n (ε, k, d, ξ; s)µ(dε, dk, dd, dξ).
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The mapping in Condition 4(e) defines the measure of firms in the set ∆ε × ∆k × ∆d × ∆ξ

next period, in terms of the distribution of firms and individual decisions in the current period.

Intuitively, this mapping counts up the mass of individual states in the current period which leads

into the set ∆ε ×∆k ×∆d ×∆ξ next period. Specifically, the mass of firms in ∆ε is determined

by the mass of firms who had a particular draw of ε and a draw of the innovation ω′ε such that

ρεε+ ω′ε ∈ ∆ε. The mass of firms in ∆k are those firms whose investment policy leads to capital

in that set, i.e., (1− δ) k + i (ε, k, d, ξ; s) ∈ ∆k. Similarly, the mass of firms in ∆d are those for

whom (1− δ̂) (i(ε, k, d, ξ; s) + d) ∈ ∆d. Finally, the mass of firms with fixed cost in ∆ξ is simply

G(∆ξ), since ξ is i.i.d. over firms and time.

2.5 Solution Method

The main challenge in solving for the recursive competitive equilibrium is the fact that the aggregate

state vector st contains the distribution of firms, which is an infinite-dimensional object. The

standard approach, following Krusell & Smith (1998), is to approximate this distribution with a

small number of moments, typically only the mean. This approach breaks down in my model

because, as I will show in Section 4, the response of aggregate investment to a shock depends on

the mass of firms relative to their adjustment thresholds.11 Adding more moments to capture this

effect is infeasible because of the curse of dimensionality.

To overcome this challenge, I employ a method which does not rely on approximating the

distribution with moments, and is nonetheless feasible to compute. The solution method has three

main steps; I sketch the idea here, and provide further details in Appendix B. In the first step, I

approximate the distribution of firms with a parametric family, and include the parameters of this

family in the aggregate state vector. This approach can provide an arbitrarily good approximation

of the distribution with a flexible enough parametric family.12

In the second step, I solve for the steady state of the model without aggregate shocks. To com-

pute the parameters of the steady state distribution, I define a mapping from the current period’s

11Using only the mean in my model yields forecast accuracy less than 80%, far below the standards of the literature.
In contrast, using only the mean yields very accurate forecasts in Khan & Thomas (2008)’s model, exactly because
their model does not feature the state dependent impulse responses I find in Section 3.
12 In my particular implementation, I use a mixture of log-normals. This class of distributions works well because

the idiosyncratic productivity shocks are themselves log-normal, and in the frictionless limit the capital stock would
be exactly proportional to the productivity shock.
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distribution into the next period’s distribution as follows: given the current period’s distribution

and decision rules, I exactly compute moments of the next period’s distribution. I then choose

the parameters approximating next period’s distribution to match these exact moments. The

parameters of the invariant distribution are then the fixed point of this mapping.

In the third step, I solve for the dynamics of the model using a globally accurate approximation

with respect to the individual state vector, but a locally accurate approximation with respect to

the aggregate state vector. A globally accurate approximation is necessary for the individual

state because individual shocks are large, but a locally accurate approximation is acceptable with

respect to the aggregate state because aggregate shocks are small. Crucially, the locally accurate

approximation is fast to compute, and can therefore accommodate many parameters to describe the

distribution. However, this mix cannot be used to break the curse of dimensionality in a standard

Krusell & Smith (1998) algorithm, because it relies on differentiating the mapping from the current

period’s distribution into the next period’s distribution. Krusell & Smith (1998) never directly

approximate this mapping, instead leaving it implicit in the simulation of the model.

3 Calibration

A key objective of the calibration strategy is to ensure that the two key features of the model —

lumpy investment and realistic interest rate dynamics —are quantitatively reasonable. To do so,

I choose a subset of parameters to reproduce these features of the data, and exogenously fix the

remaining parameters.

3.1 Fixed Parameters

The parameters I fix are listed in Table 1. Most of these parameters —β, σ, η, θ, ν, δ, ρz, and σz

—are common to the business cycle literature, so to ensure comparability I set them to common

values. Given these parameters, I then set the tax parameters τ and δ̂ to reproduce the tax burden

faced by firms in the data.

A model period is one quarter. I set β = .99 so that the steady state interest rate is 4% annually,

as in Prescott (1986). I set the utility function’s curvature parameter to 1, which corresponds to

logarithmic utility, as in Jaimovich & Rebelo (2006). I set the Frisch elasticity of labor supply

13



Table 1: Fixed Parameter Values

Parameter Description Value

β Discount factor .99

σ Curvature in utility 1

η Inverse Frisch 1
2

θ Labor share .64

ν Capital share .21

δ Capital depreciation .025

ρz Aggregate TFP AR(1) .95

σz Aggregate TFP AR(1) .007

τ Tax rate .35

δ̂ Tax depreciation .119

1
η = 2, consistent with the range of macro elasticities discussed in Chetty et. al. (2011). I set

the steady state labor share θ = .64 as in Prescott (1986), and given this choose the capital share

ν = .21 so that the total returns to scale is .85. This value lies well within the range considered by

the current literature, from .6 in Gourio & Kashyap (2007) to .92 in Khan & Thomas (2008). I set

δ = .025 so that the steady state aggregate investment to capital ratio is 10%, roughly in line with

the average in the postwar data. I set the stochastic process for TFP to ρz = .95 and σz = .007,

as in King & Rebelo (1999).

I set the tax rate to τ = .35 to match the top marginal tax rate in the federal corporate income

tax code. I then choose the tax depreciation of capital δ̂ = .112 to reproduce the average present

value of depreciation allowances documented by Zwick & Mahon (2014). I show in Appendix A

that this present value completely summarizes the impact of the tax depreciation schedule on firms’

decisions.

3.2 Fitted Parameters

The parameters I choose to match firm-level investment behavior and interest rate dynamics in the

data are listed in Table 3. On the firm side, they are ξ, the upper bound of fixed cost draws, a,
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the region around zero investment which is not subject to the fixed cost, φ, the coeffi cient on the

quadratic cost, and ρε and σε, which govern the AR(1) process for idiosyncratic productivity shocks.

On the household side, they are S, the mean of surplus consumption, and ρS , the autocorrelation

of surplus consumption. At each step of the moment-matching process, I set the leisure parameter

χ to ensure that steady state hours worked is 13 .

3.2.1 Data Targets

Firm-Level Investment The firm-level investment targets are drawn from IRS tax data between

1997 and 2010, as reported in Zwick & Mahon (2014). The data are recorded annually at the firm

level.13 I focus on the distribution of investment rates, which is investment divided by capital

stock. Investment is measured as expenditure on capital goods eligible for the Bonus Depreciation

Allowance (essentially equipment goods). Capital is measured as the value of all tax-depreciable

assets (essentially equipment and structures; I return to the mismatch of measured investment and

capital below). Because there is no entry or exit in the model, I use targets drawn from a balanced

panel. In what follows, I focus on the distribution of investment rates pooled over all firms and

years.

This IRS data is new to the literature, which mainly uses either Compustat or the Longitudinal

Research Database (LRD). The main advantage of the IRS data is that it is representative of

all corporate firms in the US, while the alternatives are subject to severe sample selection. In

particular, the LRD only contains firms in the manufacturing sector, which is problematic because

manufacturing accounts for a small and decreasing share of total output.14 Compustat only

contains large, publicly traded firms, which is problematic because large firms behave differently

than average. Overall, the IRS data used here presents a more comprehensive sample firms in the

economy.

However, the main disadvantage of using the IRS data is that the measure of investment only

includes equipment goods, while the measure of the capital stock includes both equipment and

structures. This mismatch biases measured investment rates down, because the measure of invest-

ment excludes some goods included in the measure of capital. I show in Appendix C that the main

13 I time-aggregate the quarterly observations in my model to match the annual frequency in the data.
14The LRD is also at the establishment level rather than the firm level. This is a disadvantage for studying

investment stimulus policy, which operates through changes in the firm level tax bill.
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Table 2: Data Targeted in Calibration

Micro Investment

Target Data Model

Inaction rate (%) 23.7% 23.9%

Spike rate (%) 14.4% 15.9%

Positive investment rates (%) 61.9% 60.2%

Average investment rate (%) 10.4% 10.6%

Standard deviation of investment rates .160 .121

Interest Rate Dynamics

Target Data Model

Standard deviation of interest rates (%) .12% .12%

Correlation of interest rate and output −.21 −.20

Notes: Moments targeted in calibration. Micro investment targets from firm-level IRS data, 1997 - 2010. Inaction

rate is amount investment rate less than 1%. Spike rate is amount of investment rate greater than 20%. Positive

investment is remainder. Interest rate is return on 90-day treasury bill adjusted for realized inflation. Output is real

GDP. Both series projected on lags of TFP, logged, and HP filtered.

results in this paper are robust to matching moments from Compustat, which does not have this

measurement issue. Given that Compustat has the selection issues described above, I use the IRS

data for the main text of the paper.

I target the five moments from the IRS data listed in the top panel of Table 2. The first three —

the "inaction rate", or fraction of the sample with investment rates less than 1%, the "spike rate,"

the fraction of investment rates greater than 20%, and positive investment, the fraction in between

—summarize a coarse histogram of the data. The large amount of observations in both tails reflects

lumpiness of micro-level decisions; almost 25% of the observations are inactive, while at the same

time 15% of the observations are spikes. I also match the mean and standard deviation to ensure

the model fits basic features of the distribution.

Interest Rate Dynamics I target features of the time series of the risk-free interest rate and

its comovement with aggregate output. I measure the risk-free interest rate using the return on
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90 day Treasury bills, adjusted for realized inflation.15 I measure aggregate output as real GDP

from the National Income and Product Accounts. Both series are 1953-2012.

I perform two transformations to the raw data to make it comparable with the model. First, I

project each series on ten lags of measured TFP and squared TFP, computed as the Solow residual.

This projection is a simple way to extract the portion of fluctuations due to TFP shocks, the

only shock in the model.16 Second, I apply the Hodrick-Prescott filter with parameter 1600 to

the logged, fitted values. I then target the standard deviation of the interest rate series and the

contemporaneous correlation of the interest rate with output.

3.2.2 Calibration Results

Table 3 lists the calibrated parameter values, which are broadly comparable to previous findings

in the literature. The upper bound on the fixed cost, ξ, is well between the wide range of .0083

in Khan & Thomas (2008) and 4.4 in Bachmann, Caballero, & Engel (2013). This value implies

that the average cost paid is 3.5% of the total output of the firm, which is above the 1% of Khan &

Thomas (2008) but below the 7% of Bachmann, Caballero, & Engel (2013). The average surplus

consumption ratio, S, is smaller than in Campbell & Cochrane (1999). Campbell & Cochrane

(1999) target the equity premium rather than interest rate dynamics, and need a more volatile

intertemporal marginal rate of substitution in order to do so.

As shown in Table 2, the calibrated model fits both the firm-level investment moments and

interest rate moments well. Importantly, the model captures the coarse histogram of investment

rates which is indicative of firm-level lumpy investment, and the fit to interest rate dynamics is

almost exact. However, the dispersion of investment rates is too low relative to the data.

15 I choose the risk-free rate because in my model it captures almost all of the variation in the stochastic discount
factor. This is a well-known issue with most business cycle frameworks. Like these frameworks, my model does not
generate a sizeable risk premium compared to the data. This is also important to correct, but I do not attempt to
do so in this study given widespread disagreement in the literature. Instead, I focus on the risk-free rate, which this
class of models most directly speaks to.
16The results are robust to two other methods of extracting the portion of fluctuations due to TFP. First, I could

match the impulse response of the real interest rate to a TFP shock in the data. However, this impulse response
encodes the same basic information as in the data I present below: negative upon impact and larger than a benchmark
real business cycle model. Second, I could measure productivity shocks using long-run restrictions rather than Solow
residuals. Beaudry & Guay (1996) perform this exercise and show that it gives similar results.
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Table 3: Fitted Parameter Values

Micro Heterogeneity

Parameter Description Value

ξ Upper bound on fixed costs .44

a Size of no fixed cost region .003

φ Quadratic adjustment cost 2.69

ρε Idiosyncratic productivity AR(1) .94

σε Idiosyncratic productivity AR(1) .026

Interest Rate Dynamics

Parameter Description Value

S Average surplus consumption .65

ρS Autocorrelation surplus consumption .95

Notes: Parameters chosen to match moments in Table 2.

4 Business Cycle Analysis

I begin the business cycle analysis by showing that my model and a benchmark real business cycle

model have the same predictions for unconditional second moments of aggregate output, consump-

tion, and hours. However, they differ substantially in their predictions conditional on different

points in the business cycle: in contrast to a benchmark real business cycle model, my model pre-

dicts that the response of aggregate investment to productivity shocks is state dependent.17 I

show that this state dependence allows my model to match the procyclical volatility of aggregate

investment rates in the data, which the benchmark real business cycle framework does not.

17Throughout, I compare to the benchmark real business cycle framework as a concrete example of a model which
does not generate state dependence. However, the comparison could be made more broad to include most DSGE
models. The key is that the state dependence in my model reflects a nonlinearity in the response of aggregate
investment to shocks, while most alternative models are linear.
Given the real business cycle framework I adopt, I focus exclusively on productivity shocks. However, the response

of aggregate investment to other shocks is likely to be state dependent as well, because the state dependence reflects
time variation in the mass of firms close to undergoing an extensive margin adjustment.
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4.1 Unconditional Second Moments

Appendix D shows that my model and a benchmark real business cycle model have similar pre-

dictions for aggregate second moments. The particular benchmark I use is the special case of my

model without adjustment frictions (ie, ξ = 0 and φ = 0) or habit formation (ie, ρS = 1 and S = 1).

Without adjustment frictions, the firm side of the model collapses to an aggregate Cobb-Douglas

production function, which inherits the slight decreasing returns to scale of firm-level production.

Without habit formation, the household side collapses to standard GHH preferences. For the

remainder of the paper, I refer to this simplified model as the benchmark model.

4.2 Model Generates State Dependent Impulse Responses

I now show that my model predicts that the response of aggregate investment to productivity

shocks varies over the business cycle. To generate these different points in the cycle, I feed in

two different histories of aggregate TFP shocks; one which pushes the economy into an expansion,

and the other into a recession.18 Starting from these different points, I then compute the impulse

response to a one standard deviation productivity shock.

In my model, the impulse response varies substantially between the expansion and recession, as

can be seen in the left panel of Figure 1. In the expansion, the response to the shock upon impact

is 26% higher than it is on average; summed over time, the total effect of the shock is 17% higher

than average. The fact that the total effect is smaller than the initial effect reflects intertemporal

substitution, as firms pull forward investment projects they would have done in the future. In the

recession, the response upon impact is 6% lower than average. Summed over time, the total effect

is again 6%. This indicates that intertemporal substitution plays a smaller role in the recession.19

Conversely, the benchmark model generates virtually no state dependence, as shown in the right

panel of Figure 1. In the expansion, the effect of the shock is 1% higher than average, and in the

recession 1% less. This lack of state dependence reflects the fact that the benchmark model is

18To generate these histories of shocks, I back out the series aggregate productivity which generate the observed
investment rate time series, and rescale the resulting shocks to match the assumed σz. I then generate the expansion
using shocks corresponding to the late 1990s expansion and the recession using shocks corresponding to the early
2000s recession.
19The asymmetry in the state dependence between expansion and recession happens because the history of shocks

themselves are asymmetric.
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Figure 1: State Dependent Impulse Response to Productivity Shock
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Notes: Impulse response of aggregate investment to one standard deviation productivity shock, after different
histories of shocks. Normalized so that response upon impact in steady state is 1. (a) Model from text. (b)
Benchmark model without adjustment costs or habit formation.

nearly linear.20

To show that state dependence is a general property of the model and not the product of

the particular shocks chosen to generate the examples above, Figure 2 plots the impulse response

upon impact as a function of the three previous period’s shocks, ranging from a severe recession

to an extreme expansion. This index varies from 20% lower than average in a particularly severe

recession to 15% higher than average in a similarly extreme expansion. Thus, state dependence is

a robust prediction of the model over all stages of the business cycle.

Mechanism The source of these state dependent impulse responses is variation in the mass

of firms relative to their adjustment thresholds. When many firms are close to adjusting, an

additional shock induces a lot of investment; when few firms are close to adjusting, an additional

shock induces little investment. I confirm this in Figure 3, which reproduces Figure 2 for two cases:

the full model, which contains this extensive margin mechanism, and the model without fixed costs,

which does not contain this mechanism. Without fixed costs, the model generates virtually no

20 In an exactly linear model, the impulse response function is independent of the aggregate state. The fact that the
benchmark model is approximately linear is the reason linear approximation techniques work so well. The little state
dependence I do find in the benchmark model is due to the dynamics of the capital stock. In the expansion, high
previous investment increases the capital stock relative to average. This implies that the aggregate shock increases
the marginal product of labor and capital more than on average. In the recession, the reverse is true.
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Figure 2: State Dependent Impulse Responses Over the Cycle
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Notes: Impulse response upon impact to one standard deviation productivity shock, after different histories of
shocks. Normalized so that response upon impact in steady state is 1.

state dependence in the impulse responses.

As discussed extensively in Bachmann, Caballero, & Engel (2013), the state dependence is

procyclical because the mass of firms close to adjusting is itself procyclical. To understand why,

recall that the investment policy of a firm is characterized by three objects: ka (ε, k, d; s), the

target capital stock it would adjust to if it pays the fixed cost, kn (ε, k, d; s), the constrained capital

stock it would adjust to if it does not pay the fixed cost, and ξ̂ (ε, k, d; s), the threshold fixed cost

below which it pays the fixed cost. On average, kn (ε, k, d; s) < ka (ε, k, d; s), because once a firm

adjusts capital depreciates over time. A history of good shocks, which pushes the economy into

an expansion, further increases the distance between ka (ε, k, d; s) and kn (ε, k, d; s). This increases

firms’probability of adjustment and makes them more sensitive to future shocks. Conversely, a

history of bad shocks, which pushes the economy into a recession, decreases the target capital stock

and therefore the distance between ka (ε, k, d; s) and kn (ε, k, d; s). This decreases firms’probability

of adjustment and makes them less sensitive to future shocks.

Relation to the Literature There is already a large literature which studies whether micro-level

lumpy investment generates state dependence in aggregate dynamics, as documented here. Early
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Figure 3: State Dependent Impulse Responses, Full Model and No Fixed Costs
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Notes: Impulse response upon impact to one standard deviation productivity shock, after different histories of
shocks. Normalized so that response upon impact in steady state is 1.

papers in this literature, working with prices fixed in partial equilibrium, argue that this is indeed

the case.21 However, when Thomas (2002) and Khan & Thomas (2004, 2008) embedded this

lumpy investment in an otherwise standard real business cycle model, they found that procyclical

movements in the real interest rate eliminate most of this state dependence. In fact, they found that

the resulting time series of aggregate investment is very close to the benchmark real business cycle

model. Based on this result, it is tempting to conclude that lumpy investment is not important for

understanding aggregate business cycle dynamics; for example, Thomas (2002)’s original irrelevance

result inspired Prescott (2003) to argue that "partial equilibrium reasoning addressing an inherently

general equilibrium question cannot be trusted."

I challenge this reading of the literature on the basis that the real interest rate dynamics crucial

to Khan & Thomas’irrelevance result are inconsistent with key features of the data. In Table 5,

I reproduce these features and compare them to the benchmark real business cycle model (which

is roughly equivalent to Khan & Thomas (2008)’s framework, given their irrelevance result). The

benchmark model predicts that the real interest rate is highly correlated with output, while in the

data it is slightly negatively correlated. Additionally, the benchmark model underpredicts the

21See, for example, Bertola & Caballero (1994), Caballero, Engel, & Haltiwanger (1995), or Cooper, Haltiwanger,
& Power (1999).
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Table 4: Interest Rate Dynamics

Statistic Data Model Benchmark

ρ(R̂t, Ŷt) −.21 −.20 .65

σ(R̂t) .12% .12% .04%

Notes: Correlation of interest rate with output and standard deviation of interest rate, 1953 - 2012. Interest rate is
return on 90 day treasury bills, adjusted for realized inflation. Output is real GDP. Both series are projected on lags
of measured TFP, logged, and HP filtered. Model: full model in text. Benchmark: model with no adjustment costs
or habit formation.

volatility of the interest rate by a factor of three.

The results documented in this section show that Khan & Thomas (2008)’s irrelevance result

vanishes if one extends the model to generate realistic interest rate dynamics. The comovement

of the interest rate with aggregate TFP is crucial to this result. Positive state dependence is

the result of many firms wanting to make an extensive margin adjustment in expansions. In

Khan & Thomas’model, the real interest rate increases in expansions and restrains this movement.

However, in my model, as in the data, the interest rate instead decreases slightly. Thus, matching

both micro-level lumpy investment and real interest rate dynamics is crucial for understanding the

aggregate implications of lumpy investment. In Appendix E, I describe the differences between

my framework and Khan & Thomas’in more detail.22

4.3 Model Matches Procyclical Volatility of Aggregate Investment Rate Time

Series

Having shown that state dependent impulse responses is a distinctive prediction of my model

relative to the benchmark model, I now assess whether this state dependence is a feature of the

aggregate data, and if so, whether the model can quantitatively account for it. Intuitively, the

procyclical responsiveness of aggregate investment to shocks in my model should show up as a

procyclical volatility of aggregate investment in the data. To formalize this, I follow the approach

22 In a general equilibrium environment, it is impossible to separate the effect of different adjustment frictions at
firm level from different interest rate dynamics. In previous work I separated these two by exogenously feeding in a
process for prices into Khan & Thomas (2008)’s calibrated model. In particular, I estimated a VAR for the dynamics
of the interest rate and wage, and used this as the stochastic process for prices. I found that for this empirical price
process, even with Khan & Thomas (2008)’s parameter values, the model generated state dependence.
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of Bachmann, Caballero, & Engel (2013), who propose a simple statistical model to capture time

variation in the impulse response of aggregate investment to shocks.

Specifically, Bachmann, Caballero, & Engel (2013) suggest the following statistical description

of the aggregate investment rate:23

It
Kt

= φ0 + φ1
It−1
Kt−1

+ σtet, et ∼ N(0, 1) (9)

σ2t = β0 + β1

(
It−1
Kt−1

)
+ ut

The first equation is a standard autoregression, except that the variance of the residuals is allowed

to change over time.24 The second equation specifies that this variance depends linearly on an

average of past investment rates. Although I focus here on an AR(1)-type specification, I show in

Appendix F that results are robust to more general specifications.

The possibility of heteroskedasticity in these residuals provides a simple test for state depen-

dence. In particular, the procyclical state dependence in my model implies that β1 > 0, i.e., that

aggregate investment is more responsive to shocks in expansions, when past investment is high.

Conversely, the benchmark real business cycle model predicts that β1 ≈ 0, since the response of

aggregate investment to shocks is constant over time.25

Confirming the predictions of my model, Table 7 shows that the data exhibit substantial con-

ditional heteroskedasticity. Because the units of the coeffi cient β1 are hard to interpret, I instead

report the spread of the estimated standard deviation σ̂t over the sample. For example, the

log
(
σ̂90
σ̂10

)
shows that the residuals are approximately 16% more volatile at the 90th percentile of

23To construct the quarterly investment rate time series, I follow the construction of Bachmann, Caballero, & Engel
(2013).
24This assumes that the propagation of shocks is the same over time. However, as shown in Section 3.2, the model

predicts that this changes over time as well through intertemporal substitution. I do not focus on this prediction
here.
25 I have interpreted changes in the residual variance as reflecting changes in the responsiveness of aggregate invest-

ment to underlying homoskedastic shocks. This was motivated by my model, which made exactly this prediction.
However, an alternative explanation of this heteroskedasticity is that there is no state dependence, but rather het-
eroskedasticity in the shocks themselves. This alternative explanation has different policy implications than the ones
I document in Section 5, and so is important to rule out.
In Appendix F, I argue that state dependence is the more plausible interpretation of the data. I do so in two steps.

First, I show that there is no heteroskedasticity in measured TFP shocks. This is important given the prominent
role of these shocks in my model as well as in generating fluctuations in the data. Second, I show that there is little
heteroskedasticity in output; if there was substantial heteroskedasticity in the underlying shocks, one would expect
that it shows up in these series as well. In fact, the little heteroskedasticity I do find is consistent with spillovers
from the state dependence in investment.
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Table 5: Conditional Heteroskedasticity

Statistic Data Model Benchmark

log
(
σ̂90
σ̂10

)
.153∗∗ (.031) .159 .017

log
(
σ̂75
σ̂25

)
.082∗∗ (.020) .082 .008

Results from estimating equation (9) in the text. Standard errors computed using a bootstrapping procedure.

the sample than the 10th. In addition, my model generates the same amount of conditional het-

eroskedasticity as exists in the data; when I estimate the same statistical model (9) on simulated

data from my model, the resulting log
(
σ̂90
σ̂10

)
is .159, compared to .153 in the data.26

5 Policy Analysis

I now introduce investment stimulus policy into the model and obtain two main results. First, the

effect of the policy is state dependent, becoming less powerful in recessions. Second, I develop a

micro targeted policy which increases cost effectiveness more than five times compared to existing

policies. But before deriving these aggregate predictions, I first show that the direct effect of policy

on firm-level investment is in line with what is measured in the micro data.

5.1 Institutional Background

Since investment stimulus is mainly implemented by increasing the tax writeoff for new investment,

I begin with a discussion of the US corporate tax code. According to the tax code, firms pay taxes

on their revenues net of business expenses. Most of these expenses are on nondurable production

inputs, like labor, energy, or materials. Since these inputs are completely used up in the fiscal year,

they can be fully deducted. Capital investment, however, is durable, and so it is deducted over

time. The current schedule for these deductions is given by the IRS’Modified Accelerated Cost

Recovery System, or MACRS. MACRS assigns different tax depreciation schedules to different

goods, in order to reflect the true economic depreciation of the capital used in production.

Historically, there have been two main implementations of investment stimulus policy. First,

26The little conditional heteroskedasticity that is present in the benchmark real business cycle model is again due
to the dynamics of the capital stock, as discussed in footnote 20.
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Table 6: Tax Depreciation Schedule Under Different Investment Stimulus Policies

Standard MACRS Schedule (No policy)

Year 0 1 2 3 4 5 Total PV, 7%

Deductions 200 320 192 115 115 58 1000 890

50% Bonus Depreciation

Year 0 1 2 3 4 5 Total PV, 7%

Deductions 500+100 160 96 57.5 57.5 29 1000 945

5% Investment Tax Credit

Year 0 1 2 3 4 5 Total PV, 7%

Deductions 50
35%+190 304 182.4 109.3 109.3 55 1093 1093

Notes: Tax depreciation schedule for purchase of $1000 computer. Top panel: standard schedule absent stimulus

policy. Middle panel: 50% bonus depreciation allowance. Bottom panel: 5% investment tax credit. Present value

computed using 7% discount rate.

the investment tax credit was commonly used before the 1986 tax reform. Second, the bonus

depreciation allowance, or accelerated depreciation, was used as countercyclical stimulus in the last

two recessions.

To understand how these stimulus policies work, consider the example of a firm purchasing a

$1000 computer.27 In Table 6, I reproduce the tax depreciation schedule for this $1000 purchase

under three regimes: the standard MACRS schedule, which is the baseline case without stimulus

policy; a 50% bonus depreciation allowance; and a 5% investment tax credit. First consider the

standard tax depreciation schedule. The schedule specifies that the recovery period for a computer

is five years, and the fraction of the $1000 purchase the firm writes off in each of those years. This

fraction declines over time to reflect the true economic depreciation of the computer. At the end

of the five years, the firm will have written off the full $1000 purchase price.28

Now consider how this standard schedule changes under the two investment stimulus policies.

The 50% bonus depreciation allowance allows the firm to immediately deduct 50% of the $1000,

27This example draws heavily from Table 2 in Zwick & Mahon (2014).
28 I abstract from potentially important features of the tax code for computational tractability. For example, firms

making an operating loss or carrying previous losses forward do not have taxable income, and therefore do not face
the depreciation schedule in the period of the investment.
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or $500. However, the firm can only apply the standard depreciation schedule to the remaining

$500. This does not change the total amount of the tax writeoffs, but does change the timing from

the future to the present. This increases the present value of the tax deductions, again making

investment more attractive.

The 5% investment tax credit reduces the firm’s tax bill by 5% of the $1000, or $50; expressed

in terms of tax writeoffs, this is $50
35% , where 35% is the example tax rate. The firm then applies

the standard schedule to the remaining $950. The investment tax credit thus increases both the

total amount of tax deductions and the present value of these deductions, making investment more

attractive.

5.2 Introducing Stimulus Policy into the Model

In the previous two examples, the present value of the tax deductions over time is a useful summary

of how the various tax depreciation schedules affect the incentive to invest. In my model, the present

value completely characterizes how the tax depreciation schedule affects the incentive to invest:

Proposition 2 The only way the tax depreciation schedule affects a firm’s investment policy rule

is through the effective price qt:

qt = 1− τ × PVt, where

PVt = Et

∞∑
s=0

(
Πs
j=0

1

Rt+j

)
︸ ︷︷ ︸

discount rate for period t+s

×
(

1− δ̂
)s
δ̂︸ ︷︷ ︸

deduction in period t+s

.

Proof. In Appendix A.

Proposition 2 states that the effective price of a unit of investment is 1, the price of a unit of

output, minus τ ×PVt, the present value of the depreciation allowances for that unit of investment.

The reason that only the present value of deductions matters, and not the timing, is that financial

markets are frictionless. In this case, tax deductions are equivalent to a riskless asset which

depreciates at rate δ̂.

27



With this result in hand, I model investment stimulus policy as an exogenous change to the

present value of tax depreciation schedule. In particular, I modify the effective price to be

qt = 1− τ × (PVt + subt)

where subt is an implicit subsidy representing stimulus policy. The two real world examples

described above map into different choices for the implicit subsidy subt. Specifically, the 50%

bonus depreciation allowance implies that subt = .5 × (1− PVt); it is as if the firm receives the

baseline depreciation schedule on all its investment, plus on one half of its investment gets an extra

writeoff, equal to how much the firm values a unit of output in the current period, 1, relative to a

unit of output through the depreciation schedule, PVt. The 5% investment tax credit implies that

subt = .05×
(
1
τ − PVt

)
; the subsidy equals how much the firm values the equivalent tax writeoff 1

τ

relative to the baseline schedule PVt.

The subsidy subt follows the simple stochastic process:29

log subt = log sub+ εt. (10)

The policy shock εt is distributed N(0, σ2sub). I choose sub = .01, and given that choose the

variance of the policy shock σsub so that a one standard deviation shock roughly corresponds to a

50% bonus depreciation allowance.30

Average Impulse Response to Policy Shock In the model, stimulus policy increases aggre-

gate investment by lowering the effective price qt. I illustrate this process in Figure 4, which plots

impulse responses to a one standard deviation policy shock, starting from steady state. The left

panel shows that the shock decreases the effective price by roughly 2.5 percentage points; in the

right panel, this translates into a nearly 2% increase in investment. In both cases the impulse

response dies out after one period, reflecting the transitory nature of the policy shock.

29Given the small macro literature on investment stimulus policy, there is no consensus on the form of the policy
rule. The choice here is motivated by two considerations. First, I specify the process in logs to ensure the subsidy
is always positive. Second, I specify a log-linear rule to be able to use the perturbation method of my numerical
algorithm. Given these two conditions, this was the simplest choice available.
30 I also experimented with including a term correlated with aggregate productivity, to capture expectations about

the countercyclical nature of the policy. However, for the results I show here, this was not quantitatively important.
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Figure 4: Impulse Response to Policy Shock in Steady State

(a) Effective Price qt (b) Aggregate Investment
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Notes: Impulse response to one standard deviation policy shock, starting from steady state. (a) Effective price of
investment. (b) Aggregate investment.

Taken together, the two panels of Figure 4 imply that the average semi-elasticity of aggregate

investment to the subsidy is nearly 1. However, in what follows, I do not focus on this average

elasticity. Instead, I focus on two new implications of my model: how this elasticity changes over

the business cycle, and how it can be increased by designing a more cost-effective policy.

5.3 Model Matches Direct Effect of Policy on Firm-Level Decisions

The effect of stimulus on aggregate investment is comprised of two components: the direct effect of

policy on firm-level investment decisions, and the general equilibrium effect of prices. Measuring

the direct effect of policy on firm-level decisions in the data is the subject of a large literature,

so as a validation exercise, I first compare this estimated direct effect in the data to the same

measurement in my model.

Empirical Study: Zwick & Mahon (2014) To compare my model to the data, I reproduce

a recent study by Zwick & Mahon (2014), which analyzes the effect of the bonus depreciation

allowance on firm-level investment in the last two recessions. I choose this particular study for

two reasons. First, it uses the same IRS microdata used to calibrate the model in Section 3.

Zwick & Mahon (2014) show that the sample selection in alternative datasets leads to severe bias.
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Second, Zwick & Mahon (2014)’s empirical strategy is particularly transparent, and therefore easy

to interpret.

The core of Zwick & Mahon (2014)’s empirical strategy exploits variation in the implicit subsidy

across firms. They formulate this implicit subsidy as

subjt = BDAt × (1− PVj) ,

where BDAt is the fraction of new investment eligible for the bonus and PVj the average present

value of the baseline schedule for firm j. The present value PVj varies because firms invest in

different types of capital goods, which have different depreciation schedules. Long-lived goods,

which have a low baseline present value PVj , act as a treatment group because the bonus pulls

more deductions from the future to the present. Short-lived goods, which have a high baseline

present value PVj , act as a control group because the bonus pulls fewer deductions from the future

to the present.

Zwick & Mahon (2014) implement this idea through a difference in differences design. They

specify the firm-level regression

log ijt = αi + δt + β × subjt + εjt, (11)

where αi is a firm fixed effect, δt is a time fixed effect, subjt is the implicit subsidy, and εjt is a

residual. I use this measure of the direct effect of the policy to validate my model. As with

any differences in differences exercise, the crucial identifying assumption is that "parallel trends"

holds, that is, that investment growth in long-lived and short-lived goods would have been the same

without the policy. Zwick & Mahon (2014) go to great lengths to argue that this is the case.

Reproducing Zwick & Mahon (2014) in the Model The main obstacle to reproducing Zwick

& Mahon (2014)’s regression (11) is that my model does not have variation in the subsidy across

firms. To introduce this variation, I alter my model to include two types of firms of equal mass.

These firms differ only in their baseline depreciation schedule δ̂j for j ∈ {treatment, control}, which

controls the present value PVj . I choose δ̂treatment and δ̂control to match two targets: their average

matches the value in the baseline model, and their ratio reproduces the ratio of the 90th percentile
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Table 7: Model Matches Effect of Policy on Firm-Level Investment

Data Model No Fixed Cost

Semi Elasticity 3.69∗∗ (0.53) 3.41 1.95

Notes: Estimates from the model log ijt = αj + δt + β × subjt + εjt. Data: Zwick & Mahon (2014). Model:

Simulated data from the model. No fixed cost: model with ξ = 0.

of PVj to the 10th percentile of PVj in the data.31 I feed in a history of two negative productivity

shocks, pushing the economy into a recession. Starting from this point, I then feed two years of a

50% bonus, and compute the simple difference in differences coeffi cient β̂.

Results Table 7 shows that the estimated semi elasticity in my model is 3.41, within one standard

error of Zwick & Mahon (2014)’s estimate. Therefore, my model passes this important validation

test; it reproduces the direct effect of policy on firm-level decisions in the data. Lumpy investment

is crucial to the model’s fit; when I eliminate the fixed cost, the estimated semi elasticity falls to

1.95. Without the fixed cost, the estimate only measures the intensive margin response to the

policy, which is small.32 However, in the full model, the estimate also measures the extensive

margin response to the policy, since firms with a higher subsidy are more likely to adjust. Given

the importance of the extensive margin in accounting for firm-level response to other shocks, it is

not surprising that it also accounts for a substantial portion of the response to the policy.

5.4 Policy Multiplier Declines in Recessions

To show that the policy multiplier varies over the cycle, I feed in different histories of aggregate

TFP shocks, one which leaves the economy in steady state and one which pushes the economy into

a recession.33 I choose these specific histories to compare the effect of policy on average to the

effect in a recession accompanied by 6% drop in GDP, roughly comparable to the recent recession.

31Recall that I chose δ̂ in the baseline model to reproduce the average present value in Zwick & Mahon (2014)’s
data. The aggregate dynamics of this augmented model are very similar to the original model, reflecting the fact
that δ̂treatm ent and δ̂contro l average to the δ̂ used in the original.
32 It is important to note that when I eliminate the fixed costs I do not recalibrate the remaining parameters of the

model, which would presumably require a more responsive intensive margin to match the data.
33This the state dependence in the policy multiplier does not necessarily follow from the state dependence with

respect to productivity shocks, given the different general equilibrium implications of the two shocks.
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Figure 5: State Dependent Impulse Response to Policy Shock
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Notes: Impulse response to one standard deviation policy shock, after different history of TFP shocks. Normalized
so that response upon impact in steady state is 1.

Starting from these different histories, I then compute the impulse response of aggregate investment

to a one standard deviation policy shock.

In my model, the effect of the policy is substantially reduced in recessions, as shown in Figure 5.

In the recession, the policy generates 15% less investment upon impact and 17% less investment in

total than it would on average. The mechanism is the same as before; in the recession, fewer firms

are close to their adjustment thresholds, so the policy induces fewer to adjust. More generally,

this mechanism implies that the policy multiplier varies with the state of the business cycle. To

show this, in Figure 6 I plot the total amount of investment generated by the policy, as a function

of the previous year’s shocks. The fact that the policy multiplier varies over the cycle implies that

a constant multiplier cannot be used to reliably forecast the effect of the policy at a given point in

the cycle. In fact, such predictions will be biased upward in recessions, with the bias increasing in

the severity of the recession.34

34Standard user cost of capital or tax-adjusted q models, which are often used to forecast the effect of stimulus,
are linear, which implies a constant multiplier by construction. Furthermore, these models are often estimated using
policy variation from both expansion and recessions. Therefore, the estimates loosely correspond to the average
effect.
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Figure 6: State Dependence in Policy Multiplier
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Notes: Total amount of investment generated by policy shock after different histories of TFP shocks. Normalized so
that response in steady state is 1.

Bonus Depreciation Allowance Overcomes Negative State Dependence The results

above show that a subsidy of a given size generates less investment in a recessions. A natural

way to overcome this negative state dependence is to simply offer a larger subsidy in a recession.

The solid line in Figure 7 plots the subsidy required to raise the same amount of investment as in

steady state. This required subsidy is larger in recessions, when the policy multiplier is low, and

smaller in expansions, when the policy multiplier is high.

In fact, the implicit subsidy offered by the bonus depreciation allowance follows just this coun-

tercyclical pattern: it is larger in recessions, when the policy multiplier is low, and smaller in

expansions, when the policy multiplier is high. In particular, the implied subsidy is subt =

BDA× (1− PVt), where BDA is the size of the bonus and PVt is the present value of the baseline

depreciation schedule. The dotted line in Figure 7 plots the implied subsidy from BDA = .5 at

different points in the business cycle, and shows that the implied subsidy more than compensates

for the state dependent policy multiplier. This happens because 1− PVt is countercyclical; in re-

cessions, firms place a greater value on immediate writeoffs relative to future writeoffs, as reflected

in higher interest rates used to discount future payoffs.

33



Figure 7: Subsidy Required to Match Average Effect and Subsidy Implied by Bonus Depreciation
Allowance

­3 ­2 ­1 0 1 2 3
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Previous Period TFP Shock

Su
bs

idy

Required Subsidy
BDA Subsidy

Notes: Solid line is subsidy required to generate same amount of investment as one standard deviation policy shock
in steady state. Dotted line is subsidy implied by the bonus depreciation allowance. Normalized so that subsidy in
steady state is 1.

5.5 Increasing Cost Effectiveness with Micro Targeting

I now turn to investigating the cost effectiveness of stimulus policy. Most of the cost of the policies

studied so far comes from subsidizing investment that would have been done even without the policy.

A common prescription to reduce costs is to avoid subsidizing this inframarginal investment, while

keeping the same incentives for investment that is due to the policy on the margin. In my model,

the amount of inframarginal investment at the firm level is mainly determined by whether the policy

induces the firm to adjust. Firms who do not adjust without the policy contribute very little to

the total inframarginal costs, so a powerful way to reduce costs is to provide targeted subsidies to

these firms. In principle, this micro-targeted policy could be made conditional on the entire state

vector of the firm; however, I view such a policy as unrealistic, and do not pursue it.

Instead, I propose a simple micro-targeted policy which conditions on a single observable: em-

ployment. This observable is useful because in the model, as in the data, small firms grow faster

than other firms in the economy. An important component of the growth of these firms is invest-

ment, so on average small firms are more likely to adjust without the policy. Conversely, medium

and large firms are less likely to adjust without the policy, so I target these firms. I implement
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this target with the following subsidy per unit of investment:

subjt = α1 × nα2jt

where α1 controls the baseline slope of the subsidy, and α2 controls how much the subsidy favors

larger firms. I assume this policy is implemented for one period and is completely unexpected.

The main goal of this exercise is to illustrate the size of the potential cost savings associated with

targeting the extensive margin, rather than to push for this particular size-dependent specification.

In reality, other factors may affect investment by firm size that my model does not capture, and

are therefore important to take into account when designing the policy. Furthermore, it is likely

that firms will adjust their employment decisions to take advantage of this policy. However, these

complications are only important to take into account if the potential cost savings are large.

Figure 8 shows that these potential cost savings are indeed large, generating up to five time

more investment than existing policies.35 On the horizontal axis I plot a range of α2, the weight

on employment in the subsidy. Given a value of α2, I then solve for the baseline slope α1 which

raises the same amount of revenue as the baseline size-independent subsidy. I then plot the total

amount of investment generated by this combination of α1 and α2 on the vertical axis. Hence,

increasing the weight on larger firms α2 increases the total amount of investment generated by the

micro-targeted policy.

Comparison to a Phase In To emphasize the power of this size-dependent policy, I compare

its performance to a commonly suggested alternative to improve cost effectiveness: a phase in.

A phase in avoids paying for inframarginal investment by only subsidizing investment above a

certain threshold. In representative firm models, this phase in can completely avoid paying for

inframarginal investment if the threshold is chosen correctly. I approximate this with the following

subsidy per unit of investment:

subjt = β1 × i
β2
jt ,

35 I cannot consider higher values of α2 because it implies such a large baseline subsidy that the tax-adjusted price
of investment becomes negative. This is because for higher values of α2, the policy is targeting a small mass of firms
very heavily. To keep the policy budget equivalent, it therefore has to offer these firms a very high subsidy.
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Figure 8: Amount of Investment From Micro-Targeted Policy
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Notes: Total amount of investment generated by per-unit subsidy α1 × nα2 , where n is employment. Normalized so
that amount generated by α2 = 0 is 1. Horizontal axis is α2; given α2, I choose α1 which is budget equivalent to the
case α2 = 0, and plot the total amount of investment generated on the vertical axis.

where β1 controls the baseline slope and β2 controls how quickly the subsidy is increasing in

investment.36 I then compare the amount of investment generated in the baseline case where

β2 = 0 to the case where β2 = 1, choosing β1 to ensure the policies are budget equivalent.
37 This

specification captures the idea that higher levels of investment receive a higher subsidy.

The budget-equivalent phase in only increases cost effectiveness by 45%, less than ten times the

improvement generated by my size-dependent proposal. Intuitively, the phase in targets investment

along the intensive margin, while my size-dependent policy targets investment along the extensive

margin. Given that the extensive margin accounts for a large share of firm-level investment, my

proposal is more effective.

6 Conclusion

In this paper, I showed that accounting for lumpy investment and realistic interest rate dynamics is

crucial for understanding the dynamics of aggregate investment, in response to both business cycle

and policy shocks. To emphasize the role of these key features, I abstracted from others which are

36 I model the phase in as a continuous schedule rather than a discrete cutoff for computational tractability.
37As in footnote 35, higher levels of β2 again imply that the tax-adjusted price of investment becomes negative.
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also potentially important. Incorporating such features is an active part of my research agenda,

and I briefly discuss two here.

First, in adopting a real business cycle framework, I abstracted from the aggregate demand ex-

ternality which at least partly motivated the use of stimulus policy in the first place. Incorporating

this externality would likely raise the average size of the policy multiplier through the aggregate

demand channel. Additionally, it would allow for a careful discussion of the welfare effects of in-

vestment stimulus. The results presented here are an important input into both of these analyses,

as these results are determined by adjustment costs on the supply side of the economy.

Second, I abstracted from financial frictions, which many have argued is important in accounting

for microeconomic investment behavior. Although such frictions are not required to match the

data I used in this paper, it is possible that the estimated adjustment costs partly capture the

effect of financial frictions in these data. Determining the relative magnitudes of adjustment costs

and financial frictions is important, because in contrast to my results, financial frictions imply that

investment stimulus is more powerful in recessions; stimulus decreases the amount of external funds

required to finance investment, and external funds are more costly in recessions. Recognizing this

possibility, my paper serves as an important benchmark which analyzes the effect of adjustment

costs in isolation.
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A Characterizing Equilibrium

In this Appendix, I characterize the recursive competitive equilibrium defined in Section 2.4. I

use this characterization to numerically solve the model in Appendix B, and to model investment

stimulus policy in Proposition 2 of the main text. To keep the description manageable, I proceed

in two steps. First, in Appendix A.1, I simplify the firm’s decision problem, taking all prices as

given. Second, in Appendix A.2, I embed the firm’s decision problem into a characterization of

the equilibrium.

A.1 Firm’s Decision Problem

I simplify the firm’s decision problem through a series of three propositions. These propositions

eliminate two individual state variables from the problem, which is crucial for the feasibility of the

numerical algorithm.

To ease notation, I define

π (ε, k; s) = max
n

{
(1− τ)

(
ezeεkθnν − w(s)n

)}

By construction, this does not depend on current depreciation allowances d or the fixed adjustment

cost ξ.

The first proposition shows that the firm’s value function v(ε, k, d, ξ; s) is linear in the pre-

existing stock of depreciation allowances d. I exploit this property in the other propositions to

simplify the decision rules.

Proposition 3 The firm’s value function is of the form v(ε, k, d, ξ; s) = v1(ε, k, ξ; s) + τPV (s)d

where PV (s) is defined by the recursion PV (s) = δ̂ +
(

1− δ̂
)
E [Λ(z′; s)PV (s′)]. Furthermore,
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v1(ε, k, ξ; s) is defined by the Bellman equation

v1(ε, k, ξ; s) = π (ε, k; s) + max
i


− (1− τPV (s)) i− φ

2

(
i
k

)2
k − ξw(s)1 {i /∈ [−ak, ak]}

+E[Λ(z′; s)v1
(
ε′, (1− δ) k + i, ξ′; s′

)
]

 (12)

Proof. First, I show that the value function is of the form v(ε, k, d, ξ; s) = v1(ε, k, ξ; s)+τPV (s)d for

some function v1(ε, k, ξ; s). I being by showing that the operator T defined by the right hand side of

(3) maps function of the form f(ε, k, ξ; s)+τPV (s)d into functions of the form g(ε, k, ξ; s)+τPV (s)d.

Applying T to f , we get:

T (f)(ε, k, ξ; s) = π(ε, k; s) + τ δ̂d

+ max
i


−
(

1− τ δ̂
)
i− φ

2

(
i
k

)2
k − ξw(s)1 {i /∈ [−ak, ak]}

+E[Λ(z′; s)(f(ε′, (1− δ)k + i, ξ′; s′) + τPV (s)(1− δ̂)(d+ i))]


Collecting terms,

T (f)(ε, k, ξ; s) = π(ε, k; s) + τ
(
δ̂ + (1− δ̂)E[Λ(z′; s)PV (s′)]

)
d (13)

+ max
i


−
(

1− τ δ̂ − τ(1− δ̂)E[Λ(z′; s)PV (s′)]
)
i− φ

2

(
i
k

)2
k

−ξw(s)1 {i /∈ [−ak, ak]}+ E[Λ(z′; s)f(ε′, (1− δ)k + i, ξ′; s′)]


By the definition of PV (s), we have that

τ
(
δ̂ + (1− δ̂)E[Λ(z′; s)PV (s′)]

)
d = τPV (s)

−
(

1− τ δ̂ − τ(1− δ̂)E[Λ(z′; s)PV (s′)]
)
i = − (1− τPV (s)) i

42



Plugging this back into (13) and rearranging gives

T (f)(ε, k, ξ; s) = τPV (s)d+

π(ε, k; s) + max
i


− (1− τPV (s)) i− φ

2

(
i
k

)2
k − ξw(s)1 {i /∈ [−ak, ak]}

+E[Λ(z′; s)f
(
ε′, (1− δ) k + i, ξ′; s′

)
]

︸ ︷︷ ︸
g(ε,k,ξ;s)

which is of the form τPV (s)d + g(ε, k, ξ; s). Hence, T maps functions of the form τPV (s)d +

f(ε, k, ξ; s) into functions of the form τPV (s)d + g(ε, k, ξ; s). This is a closed set of functions, so

by the contraction mapping theorem, the fixed point of T must lie in this set as well. Since the

fixed point of T is the value function, this establishes that v(ε, k, d, ξ; s) = v1(ε, k, ξ; s) + τPV (s)d.

To derive the form of v1(ε, k, ξ; s), plug v(ε, k, d, ξ; s) = v1(ε, k, ξ; s) + τPV (s)d into both sides

of the Bellman equation (3) to get

v1(ε, k, ξ; s) + τPV (s)d = π(ε, k; s) + τ δ̂d+

max
i


−
(

1− τ δ̂
)
i− φ

2

(
i
k

)2
k − ξw(s)1 {i /∈ [−ak, ak]}

+E[Λ(z′; s)(v1(ε′, (1− δ)k + i, ξ′; s′) + τPV (s)(1− δ̂)(d+ i))]


Rearranging terms as before shows that

v1(ε, k, ξ; s) + τPV (s)d = π (ε, k; s) + τPV (s)d+

max
i


− (1− τPV (s)) i− φ

2

(
i
k

)2
k − ξw(s)1 {i /∈ [−ak, ak]}

+E[Λ(z′; s)v1
(
ε′, (1− δ) k + i, ξ′; s′

)
]


Subtracting τPV (s)d from both sides establishes (12).

The above proposition shows that the depreciation allowances d do not interact with the other

state variables of the firm. The next proposition shows that this implies that investment decisions
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do not depend on d. To ease notation, I first define the ex ante value function:

v0 (ε, k; s) =

∫ ξ

0
v1(ε, k, ξ; s)

1

ξ
dξ.

Proposition 4 The investment decision rule is independent of d and given by

i(ε, k, ξ; s) =


ia (ε, k; s) if ξ ≤ ξ̂ (ε, k; s)

in (ε, k; s) if ξ > ξ̂ (ε, k; s)


where

ia (ε, k; s) = arg max
i
− (1− τPV (s)) i− φ

2

(
i

k

)2
k + E[Λ(z′; s)v0

(
ε′, (1− δ) k + i; s′

)

in (ε, k; s) =



ak if ia (ε, k; s) > ak

ia (ε, k; s) if ia (ε, k; s) ∈ [−ak, ak]

−ak if ia (ε, k; s) < −ak



ξ̂ (ε, k; s) =
1

w(s)
×



− (1− τPV (s))(ia (ε, k; s)− in (ε, k; s))

−φ
2

((
ia(ε,k;s)

k

)2
−
(
in(ε,k;s)

k

))
k

+E[Λ(z′; s)(v0 (ε′, (1− δ) k + ia (ε, k; s) ; s′)

−v0 (ε′, (1− δ) k + in (ε, k; s) ; s′))]


Proof. The form of ia(ε, k; s) follows directly from the Bellman equation (12), using the law of

iterated expectations and the fact that ξ′ is i.i.d. The form of in(ε, k; s) also follows from (12),

which shows that the objective function in the no-adjust problem is the same as the adjust problem

and the choice set is restricted. The form of i (ε, k, ξ; s) comes from the following argument. At

ξ = 0, the objective function of adjusting must be weakly greater than the no-adjust problem,

because the no-adjust problem has a constrained choice set. Further, the payoff of adjusting is
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strictly decreasing in ξ. Therefore, there must be a cutoff rule. Setting the adjust and no adjust

payoffs equal gives the form of the threshold ξ̂ (ε, k; s).

The above proposition shows that knowing v0(ε, k; s) is enough to derive the decision rules.

The next and final proposition defines the Bellman equation which determines v0(ε, k; s).

Proposition 5 v0(ε, k; s) solves the Bellman equation

v (ε, k; s) = π(ε, k; s)

+
ξ̂ (ε, k; s)

ξ


− (1− τPV (s)) ia (ε, k; s)− φ

2

(
ia(ε,k;s)

k

)2
k

− ξ̂(ε,k;s)
2 w(s) + E[Λ(z′; s)v0(ε′, (1− δ)k + ia (ε, k; s) ; s′)]


+

(
1− ξ̂ (ε, k; s)

ξ

)
− (1− τPV (s)) ia (ε, k; s)− φ

2

(
in(ε,k;s)

k

)2
k

+E[Λ(z′; s)v0(ε′, (1− δ)k + in (ε, k; s) ; s′)]


Proof. This follows from integrating v0 (ε, k; s) =

∫
v1 (ε, k, ξ; s) 1

ξ
dξ, using the expression for

v1 (ε, k, ξ; s) from Proposition 1 and the form of the policy function from Proposition 2.

A.2 A Characterization of the Equilibrium

The previous series of propositions shows that firms’decisions rules are determined by the alterna-

tive value function v0 (ε, k; s). I now embed this alternative value function into a characterization

of the recursive competitive equilibrium. Besides simplifying firms decisions, this characterization

eliminates household optimization by directly imposing the implications of household optimization

on firm behavior through prices. To do so, I follow Khan & Thomas (2008) and define p(s) to be

the marginal utility of consumption in aggregate state s. Abusing notation, I then renormalize the

value function through

v(ε, k; s) = p(s)v0(ε, k; s)

This leaves the decision rules unchanged, and I continue to denote them ia(ε, k; s), etc. In a final

abuse of notation, I denote the distribution of firms over measurable sets ∆ε ×∆k as µ.

Proposition 6 The recursive competitive equilibrium from Definition 1 is characterized by a list
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of functions v (ε, k; s), w(s), p(s), S′−1(s), C ′−1(s), and µ′(s) such that

1. (Firm optimization) v (ε, k; s) solves the Bellman equation

v (ε, k; s) = p(s)π(ε, k; s)

+
ξ̂ (ε, k; s)

ξ


−p(s) (1− τPV (s)) ia (ε, k; s)− p(s)φ2

(
ia(ε,k;s)

k

)2
k

−p(s) ξ̂(ε,k;s)2 w(s) + βE[v (ε′, (1− δ)k + ia (ε, k; s) ; s′)]


+

(
1− ξ̂ (ε, k; s)

ξ

)
−p(s) (1− τPV (s)) in (ε, k; s)− p(s)φ2

(
in(ε,k;s)

k

)2
k

+βE[v (ε′, (1− δ)k + in (ε, k; s) ; s′)]


where ia (ε, k; s), in (ε, k; s), and ξ̂ (ε, k; s) are derived from v (ε, k; s) using

ia (ε, k; s) = arg max
i
−p(s) (1− τPV (s)) i− p(s)

φ

2

(
i

k

)2
k + βE[v

(
ε′, (1− δ) k + i; s′

)

in (ε, k; s) =



ak if ia (ε, k; s) > ak

ia (ε, k; s) if ia (ε, k; s) ∈ [−ak, ak]

−ak if ia (ε, k; s) < −ak



ξ̂ (ε, k; s) =
1

p(s)w(s)
×



−p(s) (1− τPV (s))(ia (ε, k; s)− in (ε, k; s))

−p(s)φ2

((
ia(ε,k;s)

k

)2
−
(
in(ε,k;s)

k

))
k

+βE[(v (ε′, (1− δ) k + ia (ε, k; s) ; s′)

−v (ε′, (1− δ) k + in (ε, k; s) ; s′))]


and PV (s) is defined by the recursion p(s)PV (s) = p(s)δ̂ +

(
1− δ̂

)
βE [p(s′)PV (s′)|s].
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2. (Labor market clearing)

(
w(s)

χ

) 1
η

=

∫ (
n(ε, k; s) +

ξ̂ (ε, k; s)2

2ξ

)
µ (dε, dk)

where n (ε, k; s) =
(
ezeεkθν
w(s)

) 1
1−ν
.

3. (Consistency)

p(s) =

C(s)× S(s)− χ

((
w(s)
χ

) 1
η

)1+η
1 + η


−σ

where C(s) is derived from the decision rules by C(s) =
∫

(ezeεkθn(ε, k; s)ν − i (ε, k; s) −

AC(ε, k; s))µ (dε, dk) using i (ε, k; s) = ξ̂(ε,k;s)

ξ
ia (ε, k; s) +

(
1− ξ̂(ε,k;s)

ξ

)
in (ε, k; s) and AC(ε, k; s)

= ξ̂(ε,k;s)

ξ

(
φ
2

(
ia(ε,k;s)

k

)2
k

)
+
(

1− ξ̂(ε,k;s)

ξ

)(
φ
2

(
in(ε,k;s)

k

)2
k

)
. S(s) is derived from C(s) us-

ing S(s) = S
1−ρsS

ρs
−1

(
C(s)
C−1

)λ
.

4. (Laws of motion)

S′−1(s) = S(s)

C ′−1(s) = C(s)

5. (Law of motion for measure) For all measurable sets ∆ε ×∆k,

µ′(s) (∆ε ×∆k) =

∫
p(ε′ ∈ ∆ε|ε)(

ξ̂(ε, k; s)

ξ
1 {(1− δ) k + ia (ε, k; s) ∈ ∆k}+(

1− ξ̂(ε, k; s)

ξ

)
1 {(1− δ) k + in (ε, k; s) ∈ ∆k} dε′µ(dε, dk)

Proof. Condition 1 follows from Propositions 1-3, using the definition v (ε, k; s) = p(s)v0 (ε, k; s)

and noting that Λ(z′; s) = βp(s′)
p(s) . Condition 2 follows from the household’s FOC, the firms’FOC,

and labor market clearing. Condition 3 follows from output market clearing and the definition of

p(s). Condition 4 directly reproduces conditions 4(c) and 4(d) from the main text. Condition

5 follows from the original law of motion in condition 4(e) in the main text, eliminating d as an
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individual state variable and integrating out ξ.

B Solution Algorithm

In this Appendix, I detail the solution algorithm outlined in Section 2.5 of the main text. This

description draws heavily from the characterization of equilibrium presented in Appendix A. As

in the text, I proceed in three main steps. First, I represent all equilibrium objects with finite

dimensional approximations. Second, I solve for the steady state. Third, I solve for the dynamics

around steady state.

Before describing these steps in detail, I switch from the aggregate state space representation

of the equilibrium in Proposition 6 to a sequence representation of the equilibrium. This does not

change the equilibrium dynamics, but makes the presentation of the algorithm much simpler. I

keep the state space representation with respect to individual states. This mixture of state space

and sequence representations of equilibrium objects is at the core of the mixed global and local

approximation I present below.

For each t, the equilibrium objects vt (ε, k), wt, pt, St, Ct, and µt (ε, k) must satisfy:

1. (Firm optimization)

vt (ε, k) = ptπt(ε, k) (14)

+
ξ̂t (ε, k)

ξ


−pt (1− τPVt) iat (ε, k)− pt φ2

(
iat (ε,k)
k

)2
k

−pt ξ̂t(ε,k)2 wt + βEt[Eε′|ε[vt+1 (ε′, (1− δ)k + iat (ε, k))]]


+

(
1− ξ̂t (ε, k)

ξ

)
−pt (1− τPVt) int (ε, k)− pt φ2

(
int (ε,k)
k

)2
k

+βEt[Eε′|ε[vt+1 (ε′, (1− δ)k + int (ε, k))]]


where iat (ε, k), int (ε, k), and ξ̂t (ε, k) are derived from vt+1 analogously to before. Note that in

this representation, I have separated the expectation with respect to the idiosyncratic shock

ε′ from the expectation with respect to the aggregate shock zt+1.
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2. (Labor market clearing)

(
wt
χ

) 1
η

=

∫ (
nt(ε, k) +

ξ̂t (ε, k)2

2ξ

)
µt (dε, dk)

where nt (ε, k) =
(
ezeεkθν
wt

) 1
1−ν
.

3. (Consistency)

pt =

Ct × St − χ
((

wt
χ

) 1
η

)1+η
1 + η


−σ

where Ct and St are consistent with firms’decisions analogously to before.

4. (Law of motion for measure) For all measurable sets ∆ε ×∆k,

µt+1 (∆ε ×∆k) =

∫
p(ε′ ∈ ∆ε|ε)(

ξ̂t(ε, k)

ξ
1 {(1− δ) k + iat (ε, k) ∈ ∆k}+(

1− ξ̂t(ε, k)

ξ

)
1 {(1− δ) k + int (ε, k) ∈ ∆k} dε′µt(dε, dk)

B.1 Step 1: Approximate Equilibrium with Finite Dimensional Objects

The first step of my algorithm is to represent the equilibrium objects using finite-dimensional

approximations. Some objects — wt, pt, Ct, and St — are scalars, and so do not need to be

approximated at all. However, both vt (ε, k) and µt (ε, k) are infinite-dimensional. Below I discuss

how I approximate these objects, but the general approach does not rely on these particular choices.

Value Function I approximate the value function vt (ε, k) with a weighted sum of orthogonal

polynomials:

vt (ε, k) =

nε,nk∑
i,j=1,1

θijt C
i (ε)Cj(k)

where θijt is a scalar coeffi cient, C
i(·) is the Chebyshev polynomial of order i, and nε, nk are the

orders of approximation. Denote the vector of the coeffi cients by θt. See Judd (1998) for a detailed

discussion of the properties of Chebyshev polynomials.

To compute the Bellman equation, I need to compute the expectation over idiosyncratic shocks
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ε′ (the expectation over aggregate shocks will be computed implicitly in the third step). To

do so, I first transform this to an expectation over ωε, the innovation in the AR(1) process

ε′ = ρεε + ωε. Since ωε is normally distributed, I approximate the integral using Gaussian

quadrature. This quadrature scheme specifies nodes ωmε and weights wmε such that, for any func-

tion g(ωε),
∫
g(ωe)p(ωε)dωε ≈

∑nm
m=1w

m
ε g(ωmε ), where p is the p.d.f. of ωε and nm is the order of

the quadrature. Again, see Judd (1998) for details of Gaussian quadrature.

To pin down the coeffi cients θt, I use a collocation scheme. This scheme imposes that the

Bellman equation (14) holds exactly at a set of grid points {εo, kp}nε,nko,p=1,1, i.e.,

nε,nk∑
i,j=1,1

θijt C
i(εo)C

j(kp) = ptπt (εo, kp)

+
ξ̂t (εo, kp)

ξ


−pt (1− τPVt) iat (εo, kp)− pt φ2

(
iat (εo,kp)

kp

)2
kp

−pt ξ̂t(εo,kp)2 wt + βEt[
∑nm

m=1w
m
ε

∑nε,nm
i,j=1,1 θ

ij
t+1C

i(ρεεo + ωmε )Cj((1− δ)kp + iat (εo, kp))]


+

(
1− ξ̂t (εo, kp)

ξ

)
−pt (1− τPVt) int (εo, kp)− pt φ2

(
int (εo,kp)

kp

)2
kp

+βEt[
∑nm

m=1w
m
ε

∑nε,nm
i,j=1,1 θ

ij
t+1C

i(ρεεo + ωmε )Cj((1− δ)kp + int (εo, kp))]


Distribution I approximate the distribution of firms µt (ε, k) using a mixture of normals over

(ε, log k) pairs. This mixture distribution is characterized by a p.d.f. of the form:

pt (ε, log k) =

nµ∑
i=1

πitpi
(
ε, log k|mi

t,Σ
i
t

)
where pi (ε, log k|m,Σ) is the p.d.f. of a normal with mean m and covariance matrix Σ, πit is

the weight on component i, and mi
t and Σi

t are the mean and covariance matrices of component i.

Hence, the distribution is completely characterized by the vector µt =
(
{πit}nµi=1 ,

{
mi
t

}nµ
i=1

,
{
Σi
t

}nµ
i=1

)
.

With this mixture approximation, the integrals in the integrals in Conditions 2 and 3 can

be computed using Gaussian quadrature. As before, this quadrature scheme specifies nodes{(
εim, log kim

)}nm
m=1

and weights
{
wmµ
}nm
m=1

for each component i. This implies that, for any function
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g(ε, log k), ∫
g(ε, log k)pt (ε, log k) dεd log k ≈

nµ∑
i=1

πit

nm∑
m=1

wmµ g(εim, log kim)

I compute the law of motion for the measure in Condition 4 using a simple moment match-

ing scheme. Specifically, using the current period’s measure µt and decision rules derived from

θt, I compute moments of next period’s distribution µt+1(ε, k) using Gaussian quadrature and

Proposition 7 below. I then choose the coeffi cients µt+1 to match these implied moments.

Proposition 7 Let the m (ε′, log k′) be an integrable function of state variables (ε′, log k′). Then

∫
m
(
ε′, log k′

)
pt+1

(
ε′, log k′

)
dε′d log k′ (15)

=

∫


(
ξ̂t(ε,log k)

ξ

)
g(ρεε+ ω′ε, log((1− δ)k + iat (ε, k)))

+
(

1− ξ̂t(ε,log k)

ξ

)
g(ρεε+ ω′ε, log((1− δ)k + int (ε, k)))

 p(ω′ε)dω
′
εpt (ε, log k) dεd log k

where, as before, ω′ε is the innovation to the AR(1) process of idiosyncratic productivity ε
′ = ρεε+ω

′
ε,

p (ω′ε) is the p.d.f. of ω
′
ε, pt+1 (ε, log k) is the p.d.f. of firms over state variables in period t + 1,

and pt (ε, log k) is the p.d.f. of firms over state variables in period t.

Proof. By definition,

pt+1
(
ε′, log k′

)
=

∫
1
{
ρεε+ ω′ε = ω′

}
×


(
ξ̂t(ε,log k)

ξ

)
1 {log ka(ε, log k) = log k′}

+
(

1− ξ̂t(ε,log k)

ξ

)
1 {log kn(ε, log k) = log k′}


×p
(
ω′ε
)
dω′εpt (ε, log k) dεd log k

where ka(ε, log k) = (1− δ) k+ia (ε, k) and kn (ε, log k) = (1−δ)k+in (ε, k). We want an expression

for
∫
m (ε′, log k′) pt+1 (ε′, log k′) dε′d log k′. Plugging in the expression for pt+1 (ε′, log k′) above
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gives

∫
m
(
ε′, log k′

)
pt+1

(
ε′, log k′

)
dε′d log k′

=

∫
m
(
ε′, log k′

)
× 1

{
ρεε+ ω′ε = ω′

}
×


(
ξ̂t(ε,log k)

ξ

)
1 {log ka(ε, log k) = log k′}

+
(

1− ξ̂t(ε,log k)

ξ

)
1 {log kn(ε, log k) = log k′}


×dε′d log k′ × p

(
ω′ε
)
dω′εpt (ε, log k) dεd log k

Then integrate out ε′ and log k′ to arrive at (15).

Canonical Form With these approximations, the equilibrium can be written in the canonical

form of Schmitt-Grohe & Uribe (2004):

EtF (yt+1,yt,xt+1,xt) = 0 (16)

where yt is a vector of controls (i.e., non-predetermined variables), xt is a vector of states (i.e.,

predetermined variables), and F collects the Conditions 1 - 4. In my model, the predermined

variables are the aggregate shock zt, the previous period’s habit variables St−1 and Ct−1, and

the distribution µt, so xt = (zt, St−1, Ct−1,µt). The non-predetermined variables are the value

function θt, prices wt and pt, and aggregates Ct and St, so that yt = (θt, wt, pt, Ct, St).

B.2 Step 2: Solve for Steady State

The second step of my algorithm is to solve for the steady state of the model where zt = 0 for all t.

In terms of the canonical form (16), this amounts to solving for constant vectors x∗ and y∗ such

that

F (y∗,y∗,x∗,x∗) = 0. (17)

Note that in this steady state, there is still a full set of idiosyncratic shocks ε.

I solve for the x∗ and y∗ using the following iterative scheme.38 First, I guess a wage w∗. I

then solve the firm’s problem to compute the coeffi cients θ∗.39 Using this, compute the firms’

38 I could directly solve the nonlinear equation (17), but doing so directly is unstable.
39Note that I do not need to know p∗ to solve this problem, since it only appears through the stochastic discount
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decision rules along the quadrature grid, and use these values to compute the invariant distribution

µ∗ by iterating on the mapping defined by (15). I then compute aggregate labor demand from

Condition 2, compute aggregate labor supply from N∗ =
(
w∗

χ

) 1
η
, and update the wage accordingly.

Once this iteration converges on the market clearing wage, I can back out the other state state

objects.40

B.3 Step 3: Solve for Dynamics Around Steady State

The third and final step of my algorithm is to solve for the dynamics of the model around steady

state using perturbation techniques. Following Schmitt-Grohe & Uribe (2004), I denote the solution

yt = g(xt;σ)

xt+1 = h(xt;σ) + σΥωz,t+1

where σ is the perturbation parameter, Υ is a known matrix, and g and h are unknown functions to

be approximated. I approximate these functions using Taylor expansions, and show how to solve

for the coeffi cients of these Taylor expansions from the partial derivatives of F . This is a standard

perturbation problem, and I refer the reader to Schmitt-Grohe & Uribe (2004) for more details.

To simulate the model, I do not directly use the dynamics implied by g and h. Instead,

following Krusell & Smith (1997), I use g to forecast future values of xt+1, but compute prices to

clear markets exactly. See Krusell & Smith (1997) for a discussion of this approach to simulation.

Using this approach, the locally accurate dynamics implied by g and h have the same interpretation

as a Krusell & Smith (1997) forecasting rule.

B.4 Details of the Implementation

I now provide some details of my exact implementation. I set the order of approximation nε to

6 and nk to 8, which ensures that individual problems are solved accurately; increasing the order

does not change the results. I set the order of the quadrature to nm = 5, which exactly integrates

factor, which is just β = βp∗

p∗ in steady state.
40Although I have decribed this as an iteration on w∗, in practice it is more effi cient to view this as a root finding

problem in w∗.
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Table 8: Forecast Accuracy

Forecast R2

Wage .9998

Marginal utility .9997

Notes: Accuracy of forecasting rules for wt and pt in model simulation.

any polynomial of order less than 10; again, increasing the order does not change the results. I

set the number of components nµ = 1, i.e., a single component normal. This provides an accurate

approximation of the measure by two counts. First, higher order moments of the distribution

are very close to those implied by the normal. Second, in steady state, the single component

normal provides an accurate approximation to a fully nonparametric histogram. In the third step,

I implement a first order approximation using Chris Sims’ gensys solver. Most derivatives are

taken by hand, though some are taken numerically using forward differences.

In principle, agents forecast the entire distribution µt+1. However, it is diffi cult to assess the

accuracy of forecasts over individual elements of µt+1 in terms of economically meaningful units.

Therefore, in Table 8 I report the accuracy of the two prices wt and pt, which are of course derived

from the distribution.

C Calibration to Compustat Micro Data

As I discussed in Section 3, the IRS microdata used to calibrate the model has a significant mea-

surement issue: its measure of investment only contains equipment goods, while its measure of

capital contains both equipment and structures. In this Appendix, I show that the main results

of the paper are robust to calibrating instead to Compustat microdata, which does not suffer from

this measurement issue. First, I describe the Compustat data in more data. I then recalibrate the

model to this data, continuing to target the same features of real interest rate dynamics described

in the main text. Finally, I show that the recalibrated model has similar implications for the three

main results in the paper: aggregate investment is more responsive to productivity shocks in ex-

pansions, the policy multiplier declines in recessions, and micro-targeting can significantly increase
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Table 9: Alternative Data Targets

Micro Investment

Target Data Model

Inaction rate (%) 5.3% 5.9%

Spike rate (%) 14.1% 14.1%

Positive investment rates (%) 74.9% 78.6%

Negative investment rates (%) 3.8% 1.3%

Negative spike rate (%) 1.1% 0%

Average investment rate (%) 2.6% 2.6%

Standard deviation of investment rates .033 .053

Interest Rate Dynamics

Target Data Model

Standard deviation of interest rates (%) .12% .12%

Correlation of interest rate and output −.21 −.21

Notes: Moments targeted in calibration. Micro investment targets from firm-level Compustat data, 1990 - 2010.

Inaction rate is amount investment rate less between -.25% and .25%. Spike rate is amount of investment rate

greater than 5%. Positive investment is investment rate between .25% and 5%. Negative investment is investment

rate between -.25% and -5%. Negative spike rate is investment rate less than -5%. Interest rate is return on 90-day

treasury bill adjusted for realized inflation. Output is real GDP. Both series are 1953-2012, projected on lags of

TFP, logged, and HP filtered.

cost effectiveness relative to existing policies.

C.1 Compustat Micro Data

The alternative firm-level investment moments are drawn from quarterly Compustat data, 1990 -

2010. As in the main text, I focus on the distribution of investment rates, which is investment

divided by capital stock. I measure investment as capital expenditures minus sales, and measure

capital as the book value of the capital stock. Because there is no entry or exit in the model, I use

a balanced panel.

I target the seven moments from the Compustat data listed in the top panel of Table 9. The

first five correspond to a coarse histogram of investment rates, similarly to the main text.41 Since
41Besides sample coverage, there are two main differences between the Compustat data and the IRS data used in

55



Compustat contains mainly large firms, this histogram is considerably less lumpy than the IRS data

used in the main text; there are less firms undergoing an investment spike (14% of observations,

compared to 15% in the IRS data) and less firms inactive (5% of observations, compared to 25%

in the IRS data). Finally, I also match the mean and standard deviation to ensure the model fits

basic features of the distribution.

C.2 Calibration Results

Table 9 shows a rough recalibration of the model, which fits the Compustat investment moments

and real interest rate moments reasonably well. It captures the amount of inactive observations

and positive spikes, which are indicative of the lumpiness of investment in Compustat. However,

it overpredicts the amount of observations with positive investment and underpredicts the amount

with negative investment. Furthermore, it overpredicts the dispersion in investment rates. Finally,

the fit to interest rate dynamics is almost exact.

Table 10 shows the parameter values that result from this rough recalibration, and compares

them to the original calibration. Consistent with the fact that Compustat is less lumpy than the

IRS data, the fixed cost are half the size and the size of the no fixed cost region is twice as large.

The variance of the idiosyncratic productivity shocks is higher to match the amount of negative

investment, but also overpredicts the dispersion of investment rates.

C.3 Robustness of Main Results

Figure 9 shows that the main results are robust to this rough recalibration. Analogously to Figure

2, panel (a) plots the impulse response upon impact of aggregate investment to a productivity

shock, as a function of the three previous TFP shocks. The recalibrated model exhibits roughly

the same amount of state dependence as in the main text. Analogously to Figure 6, panel (b)

plots the impulse response upon impact to a policy shock, as a function of the previous year’s

TFP shocks. The recalibrated model also exhibits a procyclical policy multiplier, although the

variation is smaller than in the main text. Finally, and analogously to Figure 8, panel (c) plots

the main text. First, since Compustat records sales of capital, the histogram includes two bins of disinvestment.
The IRS data only records capital expenditure and thus does not record disinvestment. However, as shown in Table
9, disinvestment is rare, accounting for less than 5% of the Compustat observations. Second, Compustat is recorded
at a quarterly frequency, while the IRS data is annual. I scale the size of the Compustat bins to take this into
account.
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Table 10: Fitted Parameter Values

Micro Heterogeneity

Parameter Description Alternative Original

ξ Upper bound on fixed costs .25 .44

a Size of no fixed cost region .006 .003

φ Quadratic adjustment cost 2.07 2.69

ρε Idiosyncratic productivity AR(1) .97 .94

σε Idiosyncratic productivity AR(1) .034 .026

Interest Rate Dynamics

Parameter Description Alternative Original

S Average surplus consumption .65 .65

ρS Autocorrelation surplus consumption .96 .95

Notes: Alternative: parameters chosen to match moments in Table 9. Original: parameters chosen to match
moments in Table 2, as in main text.

the total amount of investment generated by the micro targeting policy, as a function of the weight

on medium and large scale firms. The micro-targeting increases cost effectiveness up to three and

a half times, which is smaller than the five times predicted in the main text.

D Unconditional Second Moments

In this Appendix, I show that my model performs equally well as a benchmark real business cycle

model with respect to unconditional second moments of aggregate series, as claimed in Section

4.1 of the main text. Specifically, I compare prediction about output, consumption, and hours.

In the data, I measure output as real gross domestic product from BEA Table 1.1.6. I measure

consumption as the sum of nondurable goods plus flow from durable services, again from BEA Table

1.1.6. I measure hours as total hours in the nonfarm business sector, from the BLS productivity

and costs release. All series are quarterly 1953 - 2012, logged, and HP-filtered with smoothing

parameter 1600.

As can be seen in Table 4, my model matches these second moments as well as the benchmark
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Figure 9: Robustness of Main Results to Alternative Calibration

(a) State dependence w.r.t. productivity (b) State dependence w.r.t. policy
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(c) Micro-targeting policy proposal
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Notes: Main results of paper, using alternative calibration to Compustat micro data in Table 9. (a) State
dependence with respect to productivty shocks, analogous to Figure 2 in main text. (b) State dependence with
respect to policy shocks, analogous to Figure 6 in main text. (c) Micro-targeting policy proposal, analogous to
Figure 8 in main text.
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Table 11: Unconditional Second Moments

(a) Volatility (b) Autocorrelation

Statistic Data Model RBC Statistic Data Model RBC

σ(Y ) 1.57% 1.61% 1.59% ρ(Y, Y−1) .85 .72 .72

σ(C)/σ(Y ) .53 .66 .66 ρ(C,C−1) .88 .72 .74

σ(I)/σ(Y ) 2.98 3.31 2.76 ρ(I, I−1) .91 .71 .71

σ(H)/σ(Y ) 1.21 .68 .66 ρ(H,H−1) .91 .72 .72

(c) Correlation with Output

Statistic Data Model RBC

ρ(C, Y ) .84 .99 .99

ρ(I, Y ) .80 .99 .99

ρ(H,Y ) .87 .99 .99

Notes: All aggregate series 1954 - 2012, logged, and HP filtered. Model: full model from main text. Benchmark: no

adjustment costs or habit formation.

real business cycle model. Both models reproduce the overall volatility of output, as well as the

relative ranking of the volatility of consumption and investment. Both models underpredict the

volatility of hours, which is a well known problem with the real business cycle framework (see

Cooley & Prescott 1995).42 The aggregate series are too highly correlated with output in both

models, reflecting the fact that aggregate TFP is the only business cycle shock. Finally, both

models underpredict the autocorrelation of the aggregate series.

E Role of Interest Rate Dynamics

In this Appendix, I discuss the role of real interest rate dynamics in explaining why my model

generates state dependence while Khan & Thomas (2008)’s does not. In both models, the real

interest rate decentralizes two key forces: the preferences of the household to smooth consumption

over time, and the capital adjustment technology which allows them to do so. To build intuition,

consider a simple supply and demand framework for the market for new investment, cleared by the

42My model has a slightly higher volatility of hours than the benchmark because labor is also used to pay the fixed
cost.
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real interest rate. This market is depicted in Figure 10. The supply of new investment comes

from the household saving for future consumption; a higher interest rate increases the return on

saving, so the household saves more. The demand for new investment comes from firms investing

in capital for production next period; a higher interest rate increases the discount factor on next

period’s profits, so firms demand less. Hence, the supply curve reflects the preferences of the

household to smooth consumption, and the demand curve reflects the ability to do so through

capital adjustment.

The dynamics of the real interest rate are determined by the relative importance of these two

key forces. Again to build intuition, consider the effect of a productivity shock in the simple supply

and demand framework. The supply curve shifts out because the shock increases the household’s

wealth, and the household saves out of this wealth. But the demand curve also shifts out because

the shock increases the future marginal product of capital, and firms invest to take advantage of

that. Whether the interest rate increases or decreases, and by how much, depends on the relative

magnitude of these two shifts.

Ultimately, the main difference between my model and Khan & Thomas (2008) is in the relative

weight we place on these two key forces. Khan & Thomas (2008) implicitly choose a configuration

which generates procyclical real interest rate dynamics, i.e., the demand shift must be greater than

the supply shift. This implies that the calibrated adjustment costs are low. Since these adjustment

costs are the source of the state dependence, Khan & Thomas (2008)’s model generates little state

dependence.

I choose a configuration of these two key forces which generates countercyclical interest rate

dynamics, i.e., the supply shift is greater than the demand shift. On the one hand, habit formation

increases the shift in supply, because households save more out of the shock. On the other hand,

the convex adjustment costs decrease the shift in supply, because firms find it more costly to take

advantage of the shock. The increased role of adjustment costs then leads to state dependence.

This discussion is closely related to Bachmann, Caballero, & Engel (2013)’s decomposition of

what they call adjustment cost smoothing (AC-smoothing) and price response smoothing (PR-

smoothing). Specifically, Bachmann, Caballero, & Engel (2013) note that the effect of a shock

on aggregate investment is, in principle, attenuated by two forces: micro-level adjustment frictions,

and general equilibrium price responses. They refer to this attenuation as smoothing, and la-
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Figure 10: Supply and Demand Intuition for Interest Rate Dynamics

(a) Original equilibrium (b) Positive shock without habit or adjustment costs
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Notes: Simple supply and demand intuition for the market for new investment, cleared by the real interest rate. (a)
Original equilibrium. (b) Positive productivity shock without habit or adjustment costs. (c) Positive productivity
shock with habit formation and adjustment costs.
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bel the respective components AC-smoothing and PR-smoothing. In Khan & Thomas (2008)’s

model, almost all the smoothing is due to PR-smoothing, because the interest rate is procyclical.

However, when the interest rate is mildly countercyclical, as in the data, the contribution of PR-

smoothing diminishes, and accordingly the contribution of AC-smoothing increases. As Bachmann,

Caballero, & Engel (2013) discuss, it is exactly the importance of AC-smoothing which leads to

state dependence.

F Heteroskedasticity

In this Appendix, I collect results about conditional heteroskedasticity which were referenced in the

main text. Specifically, in Appendix F.1, I investigate the robustness of the results to an alternative

specification of the statistical model. In Appendix F.2, I argue against the hypothesis that the

heteroskedasticity in the aggregate investment rate is driven by heteroskedasticity in aggregate

shocks.

F.1 Robustness to Alternative Specification

The statistical model in the main text is a special case of a more general class of models suggested

by Bachmann, Caballero, & Engel (2013):

It
Kt

= φ0 +

p∑
s=1

φj
It−j
Kt−j

+ σtet, et ∼ N(0, 1) (18)

σ2t = β0 + β1

1

p

p∑
j=1

It−j
Kt−j

+ ut

The specification in the main text imposes the lag length p = 1, which is motivated by the fact that

the underlying shock process is an AR(1). However, a natural question is how robust the results

are to alternative choices of lag length p. To address this issue, I focus on the case p = 6, which is

the data’s preferred lag length according to the Bayesian Information Criterion.

Table 12 shows that the qualitative results from the main text carry through for this alter-

native case: the data support my model’s prediction of positive heteroskedasticity, and reject the

benchmark model’s prediction of no heteroskedasticity. However, quantitatively my model now
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Table 12: Conditional Heteroskedasticity, Alternate Specification

Statistic Data Model Benchmark

log
(
σ̂90
σ̂10

)
.263∗∗ (.041) .112 .006

log
(
σ̂75
σ̂25

)
.134∗∗ (.025) .057 .003

Notes: Results from estimating the model (18) with p = 6. Standard errors computed with bootstrapping procedure.

underpredicts the amount of heteroskedasticity in the data. This reflects the fact that my model

is driven by AR(1) shocks, and therefore struggles with persistence at longer lags.

F.2 Ruling Out Heteroskedasticity in the Shocks

In this section, I argue against the hypothesis that the conditional heteroskedasticity in investment

is driven by heteroskedastic shocks. First, I show that measured TFP shocks do not exhibit much

heteroskedasticity. Berger & Vavra (2014) do a similar exercise for Basu, Fernald, & Kimball

(2006)’s utilization-adjusted TFP and the fed funds rate and find that neither exhibit conditional

heteroskedasticity. However, this analysis does not rule out the possibility that other, unmea-

sured shocks are heteroskedastic. To address that possibility, I then show that GDP does not

contain significant heteroskedasticity either. To the extent that unmeasured shocks affect output

and investment in similar ways, this provides further evidence against unmeasured heteroskedastic

shocks.

Measured TFP To check for heteroskedasticity in measured TFP, I estimate the same type of

model as equation (9) in the main text:

zt = φ0 + φ1zt−1 + σtet, et ∼ N(0, 1) (19)

σ2t = β0 + β1zt−1 + ut

Table 11 shows that there is virtually no conditional heteroskedasticity in measured TFP. This

result is also robust to other choices of lag length, as in Appendix F.1.
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Table 13: Conditional Heteroskedasticity in Measured TFP

Statistic Data

log
(
σ̂90
σ̂10

)
.032∗∗ (.009)

log
(
σ̂75
σ̂25

)
.015∗∗ (.007)

Notes: Results from estimating the model (19). Standard errors computed using bootstrapping procedure.

Table 14: Conditional Heteroskedasticity in Real GDP

Statistic Data

log
(
σ̂90
σ̂10

)
−.124∗∗ (.045)

log
(
σ̂75
σ̂25

)
−.065∗∗ (.032)

Notes: Results from estimating the model (20). Standard errors computed using bootstrapping procedure.

GDP To check for heteroskedasticity in GDP, I again estimate an equation of the form:

Yt = φ0 + φ1Yt−1 + σtet, et ∼ N(0, 1) (20)

σ2t = β0 + β1Yt−1 + ut

where Yt is GDP, detrended using a log-linear time trend. Table 13 shows that there is mild

negative heteroskedasticity in GDP. This is consistent with Bloom (2009), who shows that GDP

growth is more volatile in recessions. I interpret this as evidence that, if anything, underlying

unmeasured shocks are more volatile in recessions. The fact that aggregate investment is more

volatile in expansions is then evidence of the strength of the mechanism described in this paper.
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