Adverse selection

Key points

- Welfare gain to risk averse individuals from being able to buy actuarially fair insurance
- Market failure: private information about risk type \rightarrow may not be able to buy actuarially fair insurance \rightarrow may have under-insurance
- Potential scope for welfare improving government intervention
Adverse selection

- Classic theory: Akerlof (1970); Rothschild and Stiglitz (1976)
- Today: sketch a simplified graphical theoretical framework
 - To illustrate under-insurance and welfare loss that can arise with private information about health
 - To illustrate tradeoffs involved with potential government interventions (e.g. mandates)
- Up next: Take framework to data to:
 - Test for existence of adverse selection
 - Quantify resultant welfare loss
 - Assess welfare consequences of alternative policy interventions
- Overview follows Einav and Finkelstein (JEP 2011)
 - Will use health insurance as concrete example but naturally applies to any insurance
Setup - Textbook case

- Perfectly competitive, risk neutral firms offer a single health insurance product that covers you if you get sick
 - Consumer choice: buy or not buy the contract
 - Important assumption: fixing contract space (Akerlof vs. Rothschild and Stiglitz)
- Risk averse individuals identical except for their (privately known) probability of getting sick
 - NB: Growing empirical evidence on importance of heterogeneity in preferences (as well as risk).
 - Can create opposite results (advantageous vs adverse selection with over- vs under-insurance).
 - Empirically relevant (e.g. long term care insurance; Medigap)
 - Will come back to this...
- No additional frictions (e.g. administrative costs)
 - so firms’ (and social) costs of providing insurance are expected insurance claims, that is expected payouts on policies
 - Will relax later in lecture...
Setup (con’t)

- Given this setup, what drives demand?
 - {Note: unit demand. so "quantity" is share of population who purchases}
 - Because individuals identical except for probability of getting sick, individuals with higher probability of getting sick have higher demand (wtp) for insurance

- Implication: downward sloping marginal cost curve
 - Individuals with highest willingness to pay have highest expected costs
 - Link between demand and cost curve is distinguishing feature of selection markets: production costs depend on which consumers purchase your product
Adverse selection: under-insurance
Adverse selection: under-insurance

Price

Demand curve

Risk premium

MC curve
(sickest individuals have highest willingness to pay)

Quantity

$Q_{max} = Q_{eff}$
Adverse selection: under-insurance
Adverse selection: under-insurance

Price

Demand curve

MC curve

AC curve

P_{eqm}

Q_{eqm}

Q_{eff}

Finkelstein ()

PF Slides

Spring 2018 39 / 54
Can get complete unraveling
Mandates as possible solution

Price

Demand curve

MC curve

AC curve

P_{eqm}

Quantity

Q_{eqm}

Q_{diff}
Mandates as possible solution

Note: everyone not better off (some value at $< P_{mandate}$)
Potential public policy solutions

- Assume government has no better information than firm
- Comparative advantage of government is to manipulate price (tax/subsidies) or manipulate quantity (mandate)
- Subsidize insurance
 - Unambiguous welfare gain (until you consider the cost of public funds or as we will discuss it the "fiscal externalities" of the policy (Hendren 2016))
- Mandate coverage
 - Can achieve efficient outcome \(Q_{mandate} = Q_{max} = Q_{eff} \)
 - Unambiguous welfare gain; magnitude uncertain
 - Note: No Pareto Improvement - some will be made worse off by mandate
 - Useful in understanding '08 Obama-Clinton primary debates...
 - But also model specific (e.g. potential Pareto improving policies in Rothschild-Stiglitz)
Departure from textbook case I: Loads

- Why might it not be efficient to insure everyone (i.e. why might MC be above WTP for some individuals?) Assuming everyone is risk averse...
 - Loading factors on insurance (administrative costs)
 - [Profits – not yet introduced in model]
 - Horizontal product differentiation (HMO vs PPO trades off lower oop costs but with more restrictions on doctor’s choice)
 - [Moral hazard - not yet introduced in model]
- With these, everyone may not value insurance at > MC of providing it to them
- What if it is not efficient for everyone to buy insurance?
 - No longer unambiguous welfare gain from mandate
 - Tradeoff between two allocative inefficiencies: under-insurance from adverse selection vs. over-insurance from mandate
 - And this is still without allowing for preference heterogeneity! That introduces further sources of ambiguity...
Adverse selection with loads
Departure from textbook case II: Preference heterogeneity

- Individuals may differ not only in their risk type but also their preferences (e.g. risk aversion / willingness to bear risk)
 - WTP increasing in risk aversion and in risk
- Creates potential for advantageous selection (opposite results of adverse selection)
- If high-risk individuals are less risk averse and heterogeneity in risk aversion is large, can get upward sloping marginal (and therefore average) cost curve
 - Individuals with highest WTP are the most risk averse and lowest (vs. highest) expected cost
Advantageous selection

[Diagram showing demand curve, marginal cost (MC) curve, and average cost (AC) curve.]
Advantageous selection

- Over-insurance
 - Opposite problem from adverse selection
- Opposite policy solutions
 - e.g. tax (vs. subsidize) insurance