Park, Sungsu, et al.Motion to form a quorum.”. Science 301.5630 (2003): , 301, 5630, 188. Web.
Da Re, Sandra, et al.Genetic analysis of response regulator activation in bacterial chemotaxis suggests an intermolecular mechanism.”. Protein Sci 11.11 (2002): , 11, 11, 2644-54. Web.Abstract
Response regulator proteins of two-component systems are usually activated by phosphorylation. The phosphorylated response regulator protein CheY-P mediates the chemotaxis response in Escherichia coli. We performed random mutagenesis and selected CheY mutants that are constitutively active in the absence of phosphorylation. Although a single amino acid substitution can lead to constitutive activation, no single DNA base change can effect such a transition. Numerous different sets of mutations that activate in synergy were selected in several different combinations. These mutations were all located on the side of CheY defined by alpha4, beta5, alpha5, and alpha1. Our findings argue against the two-state hypothesis for response regulator activation. We propose an alternative intermolecular mechanism that involves a dynamic interplay between response regulators and their effector targets.
Wolanin, Peter M, Peter A Thomason, and Jeffry B Stock. “Histidine protein kinases: key signal transducers outside the animal kingdom.”. Genome Biol 310 (2002): , 3, 10, REVIEWS3013. Print.Abstract
Histidine protein kinases (HPKs) are a large family of signal-transduction enzymes that autophosphorylate on a conserved histidine residue. HPKs form two-component signaling systems together with their downstream target proteins, the response regulators, which have a conserved aspartate in a so-called 'receiver domain' that is phosphorylated by the HPK. Two-component signal transduction is prevalent in bacteria and is also widely used by eukaryotes outside the animal kingdom. The typical HPK is a transmembrane receptor with an amino-terminal extracellular sensing domain and a carboxy-terminal cytosolic signaling domain; most, if not all, HPKs function as dimers. They show little similarity to protein kinases that phosphorylate serine, threonine or tyrosine residues, but may share a distant evolutionary relationship with these enzymes. In excess of a thousand known genes encode HPKs, which are important for multiple functions in bacteria, including chemotaxis and quorum sensing, and in eukaryotes, including hormone-dependent developmental processes. The proteins divide into at least 11 subfamilies, only one of which is present in eukaryotes, suggesting that lateral gene transfer gave rise to two-component signaling in these organisms.
Stock, Jeffry B, Mikhail N Levit, and Peter M Wolanin. “Information processing in bacterial chemotaxis.”. Sci STKE 2002.132 (2002): , 2002, 132, pe25. Web.Abstract
Motile bacteria respond to attractants and repellents in their environment by changing their movement. Stock et al. describe the similarities of the bacterial chemotaxis signaling system to eukaryotic signaling cascades. Also included is a discussion of how the ordered signaling complex of the receptor, the kinase CheA, and the kinase regulator CheW can be thought of as a primitive "probrain" to allow the integration of signals to produce the optimal cellular response.
Levit, Mikhail N, et al.Interactions between Escherichia coli nucleoside-diphosphate kinase and DNA.”. J Biol Chem 277.7 (2002): , 277, 7, 5163-7. Web.Abstract
Nucleoside-diphosphate (NDP) kinase (NTP:nucleoside-diphosphate phosphotransferase) catalyzes the reversible transfer of gamma-phosphates from nucleoside triphosphates to nucleoside diphosphates through an invariant histidine residue. It has been reported that the high-energy phosphorylated enzyme intermediate exhibits a protein phosphotransferase activity toward the protein histidine kinases CheA and EnvZ, members of the two-component signal transduction systems in bacteria. Here we demonstrate that the apparent protein phosphotransferase activity of NDP kinase occurs only in the presence of ADP, which can mediate the phosphotransfer from the phospho-NDP kinase to the target enzymes in catalytic amounts (approximately 1 nm). These findings suggest that the protein kinase activity of NDP kinase is probably an artifact attributable to trace amounts of contaminating ADP. Additionally, we show that Escherichia coli NDP kinase, like its human homologue NM23-H2/PuF/NDP kinase B, can bind and cleave DNA. Previous in vivo functions of E. coli NDP kinase in the regulation of gene expression that have been attributed to a protein phosphotransferase activity can be explained in the context of NDP kinase-DNA interactions. The conservation of the DNA binding and DNA cleavage activities between human and bacterial NDP kinases argues strongly for the hypothesis that these activities play an essential role in NDP kinase function in vivo.
Levit, Mikhail N, Thorsten W Grebe, and Jeffry B Stock. “Organization of the receptor-kinase signaling array that regulates Escherichia coli chemotaxis.”. J Biol Chem 277.39 (2002): , 277, 39, 36748-54. Web.Abstract
Motor behavior in prokaryotes is regulated by a phosphorelay network involving a histidine protein kinase, CheA, whose activity is controlled by a family of Type I membrane receptors. In a typical Escherichia coli cell, several thousand receptors are organized together with CheA and an Src homology 3-like protein, CheW, into complexes that tend to be localized at the cell poles. We found that these complexes have at least 6 receptors per CheA. CheW is not required for CheA binding to receptors, but is essential for kinase activation. The kinase activity per mole of bound CheA is proportional to the total bound CheW. Similar results were obtained with the E. coli serine receptor, Tsr, and the Salmonella typhimurium aspartate receptor, Tar. In the case of Tsr, under conditions optimal for kinase activation, the ratio of subunits in complexes is approximately 6 Tsr:4 CheW:1 CheA. Our results indicate that information from numerous receptors is integrated to control the activity of a relatively small number of kinase molecules.
Vafai, Scott B, and Jeffry B Stock. “Protein phosphatase 2A methylation: a link between elevated plasma homocysteine and Alzheimer's Disease.”. FEBS Lett 518.1-3 (2002): , 518, 1-3, 1-4. Print.Abstract
Tau hyperphosphorylation is a central event in the development of Alzheimer's Disease (AD). Protein phosphatase 2A (PP2A) heterotrimer formation is necessary for efficient dephosphorylation of the tau protein. S-Adenosylmethionine-dependent carboxyl methylation is essential for the assembly of PP2A heterotrimers. Epidemiological evidence indicates that elevated plasma homocysteine is an independent risk factor for AD. Homocysteine is a key intermediate in the methyl cycle and elevated plasma homocysteine results in a global decrease in cellular methylation. We propose that the PP2A methylation system is the link relating elevated plasma homocysteine to AD.
Levit, Mikhail N, and Jeffry B Stock. “Receptor methylation controls the magnitude of stimulus-response coupling in bacterial chemotaxis.”. J Biol Chem 277.39 (2002): , 277, 39, 36760-5. Web.Abstract
Motile prokaryotes employ a chemoreceptor-kinase array to sense changes in the media and properly adjust their swimming behavior. This array is composed of a family of Type I membrane receptors, a histidine protein kinase (CheA), and an Src homology 3-like protein (CheW). Binding of an attractant to the chemoreceptors inhibits CheA, which results in decreased phosphorylation of the chemotaxis response regulator (CheY). Sensitivity of the system to stimuli is modulated by a protein methyltransferase (CheR) and a protein methylesterase (CheB) that catalyze the methylation and demethylation of specific glutamyl residues in the cytoplasmic domain of the receptors. One of the most fundamental unanswered questions concerning the bacterial chemotaxis mechanism is the quantitative relationship between ligand binding to receptors and CheA inhibition. We show that the receptor glutamyl modifications cause adaptation by changing the gain (magnitude amplification) between attractant binding and kinase inhibition without substantially affecting ligand binding affinity. The mechanism adjusts receptor sensitivity to background stimulus intensity over several orders of magnitude of attractant concentrations. The cooperative effects of ligand binding appear to be minimal with Hill coefficients for kinase inhibition less than 2, independent of the state of glutamyl modification.
Thomason, Peter A, Peter M Wolanin, and Jeffry B Stock. “Signal transduction: receptor clusters as information processing arrays.”. Curr Biol 12.11 (2002): , 12, 11, R399-401. Print.Abstract
The organization of transmembrane receptors into higher-order arrays occurs in cells as different as bacteria, lymphocytes and neurons. What are the implications of receptor clustering for short-term and long-term signaling processes that occur in response to ligand binding?