Publications

2018
Giovannucci, A, et al.Automated gesture tracking in head-fixed mice”. J Neurosci Methods 300 (2018): , 300, 184-195. Web.Abstract
BACKGROUND: The preparation consisting of a head-fixed mouse on a spherical or cylindrical treadmill offers unique advantages in a variety of experimental contexts. Head fixation provides the mechanical stability necessary for optical and electrophysiological recordings and stimulation. Additionally, it can be combined with virtual environments such as T-mazes, enabling these types of recording during diverse behaviors. NEW METHOD: In this paper we present a low-cost, easy-to-build acquisition system, along with scalable computational methods to quantitatively measure behavior (locomotion and paws, whiskers, and tail motion patterns) in head-fixed mice locomoting on cylindrical or spherical treadmills. EXISTING METHODS: Several custom supervised and unsupervised methods have been developed for measuring behavior in mice. However, to date there is no low-cost, turn-key, general-purpose, and scalable system for acquiring and quantifying behavior in mice. RESULTS: We benchmark our algorithms against ground truth data generated either by manual labeling or by simpler methods of feature extraction. We demonstrate that our algorithms achieve good performance, both in supervised and unsupervised settings. CONCLUSIONS: We present a low-cost suite of tools for behavioral quantification, which serve as valuable complements to recording and stimulation technologies being developed for the head-fixed mouse preparation.
Deverett, Ben, et al.Cerebellar involvement in an evidence-accumulation decision-making task”. Elife 7 (2018). Web.Abstract
To make successful evidence-based decisions, the brain must rapidly and accurately transform sensory inputs into specific goal-directed behaviors. Most experimental work on this subject has focused on forebrain mechanisms. Using a novel evidence-accumulation task for mice, we performed recording and perturbation studies of crus I of the lateral posterior cerebellum, which communicates bidirectionally with numerous forebrain regions. Cerebellar inactivation led to a reduction in the fraction of correct trials. Using two-photon fluorescence imaging of calcium, we found that Purkinje cell somatic activity contained choice/evidence-related information. Decision errors were represented by dendritic calcium spikes, which in other contexts are known to drive cerebellar plasticity. We propose that cerebellar circuitry may contribute to computations that support accurate performance in this perceptual decision-making task.
Badura, Aleksandra, et al.Normal cognitive and social development require posterior cerebellar activity”. Elife 7 (2018). Web.Abstract
Cognitive and social capacities require postnatal experience, yet the pathways by which experience guides development are unknown. Here we show that the normal development of motor and nonmotor capacities requires cerebellar activity. Using chemogenetic perturbation of molecular layer interneurons to attenuate cerebellar output in mice, we found that activity of posterior regions in juvenile life modulates adult expression of eyeblink conditioning (paravermal lobule VI, crus I), reversal learning (lobule VI), persistive behavior and novelty-seeking (lobule VII), and social preference (crus I/II). Perturbation in adult life altered only a subset of phenotypes. Both adult and juvenile disruption left gait metrics largely unaffected. Contributions to phenotypes increased with the amount of lobule inactivated. Using an anterograde transsynaptic tracer, we found that posterior cerebellum made strong connections with prelimbic, orbitofrontal, and anterior cingulate cortex. These findings provide anatomical substrates for the clinical observation that cerebellar injury increases the risk of autism.
2017
Giovannucci, Andrea, et al.Cerebellar granule cells acquire a widespread predictive feedback signal during motor learning”. Nat Neurosci 20.5 (2017): , 20, 5, 727-734. Web.Abstract
Cerebellar granule cells, which constitute half the brain's neurons, supply Purkinje cells with contextual information necessary for motor learning, but how they encode this information is unknown. Here we show, using two-photon microscopy to track neural activity over multiple days of cerebellum-dependent eyeblink conditioning in mice, that granule cell populations acquire a dense representation of the anticipatory eyelid movement. Initially, granule cells responded to neutral visual and somatosensory stimuli as well as periorbital airpuffs used for training. As learning progressed, two-thirds of monitored granule cells acquired a conditional response whose timing matched or preceded the learned eyelid movements. Granule cell activity covaried trial by trial to form a redundant code. Many granule cells were also active during movements of nearby body structures. Thus, a predictive signal about the upcoming movement is widely available at the input stage of the cerebellar cortex, as required by forward models of cerebellar control.
2016
Cope, Elise C, et al.Immature Neurons and Radial Glia, But Not Astrocytes or Microglia, Are Altered in Adult Cntnap2 and Shank3 Mice, Models of Autism”. eNeuro 35 (2016). Web.Abstract
Autism spectrum disorder (ASD) is often associated with cognitive deficits and excessive anxiety. Neuroimaging studies have shown atypical structure and neural connectivity in the hippocampus, medial prefrontal cortex (mPFC), and striatum, regions associated with cognitive function and anxiety regulation. Adult hippocampal neurogenesis is involved in many behaviors that are disrupted in ASD, including cognition, anxiety, and social behaviors. Additionally, glial cells, such as astrocytes and microglia, are important for modulating neural connectivity during development, and glial dysfunction has been hypothesized to be a key contributor to the development of ASD. Cells with astroglial characteristics are known to serve as progenitor cells in the developing and adult brain. Here, we examined adult neurogenesis in the hippocampus, as well as astroglia and microglia in the hippocampus, mPFC, and striatum of two models that display autism-like phenotypes, Cntnap2 and Shank3 transgenic mice. We found a substantial decrease in the number of immature neurons and radial glial progenitor cells in the ventral hippocampus of both transgenic models compared with wild-type controls. No consistent differences were detected in the number or size of astrocytes or microglia in any other brain region examined. Future work is needed to explore the functional contribution of adult neurogenesis to autism-related behaviors as well as to temporally characterize glial plasticity as it is associated with ASD.
2015
Kloth, Alexander D, et al.Cerebellar associative sensory learning defects in five mouse autism models”. Elife 4 (2015): , 4, e06085. Web.Abstract
Sensory integration difficulties have been reported in autism, but their underlying brain-circuit mechanisms are underexplored. Using five autism-related mouse models, Shank3+/ΔC, Mecp2(R308/Y), Cntnap2-/-, L7-Tsc1 (L7/Pcp2(Cre)::Tsc1(flox/+)), and patDp(15q11-13)/+, we report specific perturbations in delay eyeblink conditioning, a form of associative sensory learning requiring cerebellar plasticity. By distinguishing perturbations in the probability and characteristics of learned responses, we found that probability was reduced in Cntnap2-/-, patDp(15q11-13)/+, and L7/Pcp2(Cre)::Tsc1(flox/+), which are associated with Purkinje-cell/deep-nuclear gene expression, along with Shank3+/ΔC. Amplitudes were smaller in L7/Pcp2(Cre)::Tsc1(flox/+) as well as Shank3+/ΔC and Mecp2(R308/Y), which are associated with granule cell pathway expression. Shank3+/ΔC and Mecp2(R308/Y) also showed aberrant response timing and reduced Purkinje-cell dendritic spine density. Overall, our observations are potentially accounted for by defects in instructed learning in the olivocerebellar loop and response representation in the granule cell pathway. Our findings indicate that defects in associative temporal binding of sensory events are widespread in autism mouse models.
2014
Piochon, Claire, et al.Cerebellar plasticity and motor learning deficits in a copy-number variation mouse model of autism”. Nat Commun 5 (2014): , 5, 5586. Web.Abstract
A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, occurring in a majority of children with autism, consistent with perturbation in cerebellar function. Here we report alterations in motor behaviour and cerebellar synaptic plasticity in a mouse model (patDp/+) for the human 15q11-13 duplication, one of the most frequently observed genetic aberrations in autism. These mice show ASD-resembling social behaviour deficits. We find that in patDp/+ mice delay eyeblink conditioning--a form of cerebellum-dependent motor learning--is impaired, and observe deregulation of a putative cellular mechanism for motor learning, long-term depression (LTD) at parallel fibre-Purkinje cell synapses. Moreover, developmental elimination of surplus climbing fibres--a model for activity-dependent synaptic pruning--is impaired. These findings point to deficits in synaptic plasticity and pruning as potential causes for motor problems and abnormal circuit development in autism.
Wang, Samuel S-H, Alexander D Kloth, and Aleksandra Badura. “The cerebellum, sensitive periods, and autism”. Neuron 83.3 (2014): , 83, 3, 518-32. Web.Abstract
Cerebellar research has focused principally on adult motor function. However, the cerebellum also maintains abundant connections with nonmotor brain regions throughout postnatal life. Here we review evidence that the cerebellum may guide the maturation of remote nonmotor neural circuitry and influence cognitive development, with a focus on its relationship with autism. Specific cerebellar zones influence neocortical substrates for social interaction, and we propose that sensitive-period disruption of such internal brain communication can account for autism's key features.
Najafi, Farzaneh, et al.Coding of stimulus strength via analog calcium signals in Purkinje cell dendrites of awake mice”. Elife 3 (2014): , 3, e03663. Web.Abstract
The climbing fiber input to Purkinje cells acts as a teaching signal by triggering a massive influx of dendritic calcium that marks the occurrence of instructive stimuli during cerebellar learning. Here, we challenge the view that these calcium spikes are all-or-none and only signal whether the instructive stimulus has occurred, without providing parametric information about its features. We imaged ensembles of Purkinje cell dendrites in awake mice and measured their calcium responses to periocular airpuffs that serve as instructive stimuli during cerebellar-dependent eyeblink conditioning. Information about airpuff duration and pressure was encoded probabilistically across repeated trials, and in two additional signals in single trials: the synchrony of calcium spikes in the Purkinje cell population, and the amplitude of the calcium spikes, which was modulated by a non-climbing fiber pathway. These results indicate that calcium-based teaching signals in Purkinje cells contain analog information that encodes the strength of instructive stimuli trial-by-trial.
Badura, Aleksandra, et al.Fast calcium sensor proteins for monitoring neural activity”. Neurophotonics 12 (2014): , 1, 2, 025008. Web.Abstract
A major goal of the BRAIN Initiative is the development of technologies to monitor neuronal network activity during active information processing. Toward this goal, genetically encoded calcium indicator proteins have become widely used for reporting activity in preparations ranging from invertebrates to awake mammals. However, slow response times, the narrow sensitivity range of Ca and in some cases, poor signal-to-noise ratio still limit their usefulness. Here, we review recent improvements in the field of neural activity-sensitive probe design with a focus on the GCaMP family of calcium indicator proteins. In this context, we present our newly developed Fast-GCaMPs, which have up to 4-fold accelerated off-responses compared with the next-fastest GCaMP, GCaMP6f. Fast-GCaMPs were designed by destabilizing the association of the hydrophobic pocket of calcium-bound calmodulin with the RS20 binding domain, an intramolecular interaction that protects the green fluorescent protein chromophore. Fast-GCaMP6f-RS06 and Fast-GCaMP6f-RS09 have rapid off-responses in stopped-flow fluorimetry, in neocortical brain slices, and in the intact cerebellum . Fast-GCaMP6f variants should be useful for tracking action potentials closely spaced in time, and for following neural activity in fast-changing compartments, such as axons and dendrites. Finally, we discuss strategies that may allow tracking of a wider range of neuronal firing rates and improve spike detection.
Schoenfeld, Timothy J, et al.Gap junctions in the ventral hippocampal-medial prefrontal pathway are involved in anxiety regulation”. J Neurosci 34.47 (2014): , 34, 47, 15679-88. Web.Abstract
Anxiety disorders are highly prevalent but little is known about their underlying mechanisms. Gap junctions exist in brain regions important for anxiety regulation, such as the ventral hippocampus (vHIP) and mPFC, but their functions in these areas have not been investigated. Using pharmacological blockade of neuronal gap junctions combined with electrophysiological recordings, we found that gap junctions play a role in theta rhythm in the vHIP and mPFC of adult mice. Bilateral infusion of neuronal gap junction blockers into the vHIP decreased anxiety-like behavior on the elevated plus maze and open field. Similar anxiolytic effects were observed with unilateral infusion of these drugs into the vHIP combined with contralateral infusion into the mPFC. No change in anxious behavior was observed with gap junction blockade in the unilateral vHIP alone or in the bilateral dorsal HIP. Since physical exercise is known to reduce anxiety, we examined the effects of long-term running on the expression of the neuronal gap junction protein connexin-36 among inhibitory interneurons and found a reduction in the vHIP. Despite this change, we observed no alteration in theta frequency or power in long-term runners. Collectively, these findings suggest that neuronal gap junctions in the vHIP-mPFC pathway are important for theta rhythm and anxiety regulation under sedentary conditions but that additional mechanisms are likely involved in running-induced reduction in anxiety.
Najafi, Farzaneh, et al.Sensory-driven enhancement of calcium signals in individual Purkinje cell dendrites of awake mice”. Cell Rep 65 (2014): , 6, 5, 792-798. Web.Abstract
Climbing fibers (CFs) are thought to contribute to cerebellar plasticity and learning by triggering a large influx of dendritic calcium in the postsynaptic Purkinje cell (PC) to signal the occurrence of an unexpected sensory event. However, CFs fire about once per second whether or not an event occurs, raising the question of how sensory-driven signals might be distinguished from a background of ongoing spontaneous activity. Here, we report that in PC dendrites of awake mice, CF-triggered calcium signals are enhanced when the trigger is a sensory event. In addition, we show that a large fraction of the total enhancement in each PC dendrite can be accounted for by an additional boost of calcium provided by sensory activation of a non-CF input. We suggest that sensory stimulation may modulate dendritic voltage and calcium concentration in PCs to increase the strength of plasticity signals during cerebellar learning.
Shi, Diana D, et al.Synthesis and biological evaluation of bis-CNB-GABA, a photoactivatable neurotransmitter with low receptor interference and chemical two-photon uncaging properties”. J Am Chem Soc 136.5 (2014): , 136, 5, 1976-81. Web.Abstract
Photoactivatable "caged" neurotransmitters allow optical control of neural tissue with high spatial and temporal precision. However, the development of caged versions of the chief vertebrate inhibitory neurotransmitter, γ-amino butyric acid (GABA), has been limited by the propensity of caged GABAs to interact with GABA receptors. We describe herein the synthesis and application of a practically useful doubly caged GABA analog, termed bis-α-carboxy-2-nitrobenzyl-GABA (bis-CNB-GABA). Uncaging of bis-CNB-GABA evokes inward GABAergic currents in cerebellar molecular layer interneurons with rise times of 2 ms, comparable to flash duration. Response amplitudes depend on the square of flash intensity, as expected for a chemical two-photon uncaging effect. Importantly, prior to uncaging, bis-CNB-GABA is inactive at the GABAA receptor, evoking no changes in holding current in voltage-clamped neurons and showing an IC50 of at least 2.5 mM as measured using spontaneous GABAergic synaptic currents. Bis-CNB-GABA is stable in solution, with an estimated half-life of 98 days in the light. We expect that bis-CNB-GABA will prove to be an effective tool for high-resolution chemical control of brain circuits.
2013
Schneider, Eve R, Eugene F Civillico, and Samuel S-H Wang. “Calcium-based dendritic excitability and its regulation in the deep cerebellar nuclei”. J Neurophysiol 109.9 (2013): , 109, 9, 2282-92. Web.Abstract
The deep cerebellar nuclei (DCN) convey the final output of the cerebellum and are a major site of activity-dependent plasticity. Here, using patch-clamp recording and two-photon calcium imaging in rat brain slices, we demonstrate that DCN dendrites exhibit three hallmarks of active amplification of electrical signals. First, they produce calcium transients with rise times of tens of milliseconds, comparable in amplitude and duration to calcium spikes in other neurons. Second, calcium signal amplitudes are undiminished along the length of dendrites to the farthest distances from the soma. Third, they can generate calcium signals even in the presence of tetrodotoxin, a sodium channel blocker that abolishes somatic action potential initiation. DCN calcium transients do require the action of T-type calcium channels, a common voltage-gated conductance in excitable dendrites. Dendritic calcium influx was evoked by release from hyperpolarization, peaked within tens of milliseconds, and was observed in both transient- and weak-rebound-firing neurons. In a survey across the DCN, transient-burst rebound firing, which was accompanied by the most rapid calcium flux, was more common in lateral nucleus than in interpositus nucleus and was not seen in medial nucleus. Rebound firing and calcium transients were not present in animals shipped 1-3 days before recording, a condition associated with elevated maternal and pup corticosterone and reduced pup body weight. Rebounds could be restored by the protein kinase C activator phorbol 12-myristate-13-acetate. Thus local calcium-based dendritic excitability supports a stage of presomatic amplification that is under regulation by stress and neuromodulatory influence.
Sun, Xiaonan R, et al.Fast GCaMPs for improved tracking of neuronal activity”. Nat Commun 4 (2013): , 4, 2170. Web.Abstract
The use of genetically encodable calcium indicator proteins to monitor neuronal activity is hampered by slow response times and a narrow Ca(2+)-sensitive range. Here we identify three performance-limiting features of GCaMP3, a popular genetically encodable calcium indicator protein. First, we find that affinity is regulated by the calmodulin domain's Ca(2+)-chelating residues. Second, we find that off-responses to Ca(2+) are rate-limited by dissociation of the RS20 domain from calmodulin's hydrophobic pocket. Third, we find that on-responses are limited by fast binding to the N-lobe at high Ca(2+) and by slow binding to the C-lobe at lower Ca(2+). We develop Fast-GCaMPs, which have up to 20-fold accelerated off-responses and show that they have a 200-fold range of K(D), allowing coexpression of multiple variants to span an expanded range of Ca(2+) concentrations. Finally, we show that Fast-GCaMPs track natural song in Drosophila auditory neurons and generate rapid responses in mammalian neurons, supporting the utility of our approach.
2012
Kuhn, Bernd, et al.An amplified promoter system for targeted expression of calcium indicator proteins in the cerebellar cortex”. Front Neural Circuits 6 (2012): , 6, 49. Web.Abstract
Recording of identified neuronal network activity using genetically encoded calcium indicators (GECIs) requires labeling that is cell type-specific and bright enough for the detection of functional signals. However, specificity and strong expression are often not achievable using the same promoter. Here we present a combinatorial approach for targeted expression and single-cell-level quantification in which a weak promoter is used to drive trans-amplification under a strong general promoter. We demonstrated this approach using recombinant adeno-associated viruses (rAAVs) to deliver the sequence of the GECI D3cpv in the mouse cerebellar cortex. Direct expression under the human synapsin promoter (hSYN) led to high levels of expression (50-100 μM) in five interneuron types of the cerebellar cortex but not in Purkinje cells (PCs) (≤10 μM), yielding sufficient contrast to allow functional signals to be recorded from somata and processes in awake animals using two-photon microscopy. When the hSYN promoter was used to drive expression of the tetracycline transactivator (tTA), a second rAAV containing the bidirectional TET promoter (P(tet)bi) could drive strong D3cpv expression in PCs (10-300 μM), enough to allow reliable complex spike detection in the dendritic arbor. An amplified approach should be of use in monitoring neural processing in selected cell types and boosting expression of optogenetic probes. Additionally, we overcome cell toxicity associated with rAAV injection and/or local GECI overexpression by combining the virus injection with systemic pre-injection of hyperosmotic D-mannitol, and by this double the time window for functional imaging.
Campbell, Benjamin C, and Samuel S-H Wang. “Familial linkage between neuropsychiatric disorders and intellectual interests”. PLoS One 71 (2012): , 7, 1, e30405. Web.Abstract
From personality to neuropsychiatric disorders, individual differences in brain function are known to have a strong heritable component. Here we report that between close relatives, a variety of neuropsychiatric disorders covary strongly with intellectual interests. We surveyed an entire class of high-functioning young adults at an elite university for prospective major, familial incidence of neuropsychiatric disorders, and demographic and attitudinal questions. Students aspiring to technical majors (science/mathematics/engineering) were more likely than other students to report a sibling with an autism spectrum disorder (p = 0.037). Conversely, students interested in the humanities were more likely to report a family member with major depressive disorder (p = 8.8×10(-4)), bipolar disorder (p = 0.027), or substance abuse problems (p = 1.9×10(-6)). A combined PREdisposition for Subject MattEr (PRESUME) score based on these disorders was strongly predictive of subject matter interests (p = 9.6×10(-8)). Our results suggest that shared genetic (and perhaps environmental) factors may both predispose for heritable neuropsychiatric disorders and influence the development of intellectual interests.
Richard Sun, X, et al.SnapShot: Optical control and imaging of brain activity”. Cell 149.7 (2012): , 149, 7, 1650-1650.e2. Web.
Ozden, Ilker, et al.Widespread state-dependent shifts in cerebellar activity in locomoting mice”. PLoS One 78 (2012): , 7, 8, e42650. Web.Abstract
Excitatory drive enters the cerebellum via mossy fibers, which activate granule cells, and climbing fibers, which activate Purkinje cell dendrites. Until now, the coordinated regulation of these pathways has gone unmonitored in spatially resolved neuronal ensembles, especially in awake animals. We imaged cerebellar activity using functional two-photon microscopy and extracellular recording in awake mice locomoting on an air-cushioned spherical treadmill. We recorded from putative granule cells, molecular layer interneurons, and Purkinje cell dendrites in zone A of lobule IV/V, representing sensation and movement from trunk and limbs. Locomotion was associated with widespread increased activity in granule cells and interneurons, consistent with an increase in mossy fiber drive. At the same time, dendrites of different Purkinje cells showed increased co-activation, reflecting increased synchrony of climbing fiber activity. In resting animals, aversive stimuli triggered increased activity in granule cells and interneurons, as well as increased Purkinje cell co-activation that was strongest for neighboring dendrites and decreased smoothly as a function of mediolateral distance. In contrast with anesthetized recordings, no 1-10 Hz oscillations in climbing fiber activity were evident. Once locomotion began, responses to external stimuli in all three cell types were strongly suppressed. Thus climbing and mossy fiber representations can shift together within a fraction of a second, reflecting in turn either movement-associated activity or external stimuli.
2010
Granstedt, Andrea E, et al.Calcium imaging of neuronal circuits in vivo using a circuit-tracing pseudorabies virus”. Cold Spring Harb Protoc 2010.4 (2010): , 2010, 4, pdb.prot5410. Web.Abstract
Pseudorabies virus (PRV) is a neuroinvasive virus of the herpes family that has a broad host range but does not infect higher-order primates. PRV characteristically travels along chains of synaptically connected neurons and has been used extensively for elucidating neural circuits in the peripheral and central nervous system in vivo. The recombinant virus PRV369 is an attenuated retrograde tracer that encodes G-CaMP2, a fluorescent calcium sensor protein that is stable at physiological pH and mammalian temperature. This protocol describes the use of PRV369 to express G-CaMP2 in a neuronal circuit and to monitor its activity in a living animal, specifically in the submandibular ganglia (SMG), the peripheral parasympathetic ganglia that innervate the salivary glands. The procedure describes the delivery of PRV369 to the glands and shows how SMG neurons can then be imaged post-inoculation to explore connectivity and activity.

Pages