Publications

2019
Stadlmeier, M. ; Runtsch, L. S. ; Streshnev, F. ; Wühr, M. ; Carell, T. A Click‐chemistry based enrichable cross‐linker for structural and protein interaction analysis by mass spectrometry. ChemBioChem 2019. 2019_stadlmeier_carell_chembiochem.pdf
Peshkin, L. *; Gupta, M. *; Ryazanova, L. ; Wühr, M. Bayesian Confidence Intervals for Multiplexed Proteomics Integrate Ion-Statistics with Peptide Quantification Concordance. Molecular & Cellular Proteomics 2019. Publisher's VersionAbstract
Multiplexed proteomics has emerged as a powerful tool to measure relative protein expression levels across multiple conditions. The relative protein abundances are inferred by comparing the signals generated by isobaric tags, which encode the samples’ origins. Intuitively, the trust associated with a protein measurement depends on the similarity of ratios from the protein’s peptides and the signal-strength of these measurements. However, typically the average peptide ratio is reported as the estimate of relative protein abundance, which is only the most likely ratio with a very naive model. Moreover, there is no sense on the confidence in these measurements. Here, we present a mathematically rigorous approach that integrates peptide signal strengths and peptidemeasurement agreement into an estimation of the true protein ratio and the associated confidence (BACIQ). The main advantages of BACIQ are: 1) It removes the need to threshold reported peptide signal based on an arbitrary cut-off, thereby reporting more measurements from a given experiment; 2) Confidence can be assigned without replicates; 3) For repeated experiments BACIQ provides confidence intervals for the union, not the intersection, of quantified proteins; 4) For repeated experiments, BACIQ confidence intervals are more predictive than confidence intervals based on protein measurement agreement. To demonstrate the power of BACIQ we reanalyzed previously published data on subcellular protein movement upon treatment with an Exportin-1 inhibiting drug. We detect ~2x more highly significant movers, down to subcellular localization changes of ~1% . Thus, our method drastically increases the value obtainable from quantitative proteomics experiments helping researchers to interpret their data and prioritize resources. To make our approach easily accessible we distribute it via a Python/Stan package
2019_peshkin_wuhr_mcp.pdf
Hart, E. M. ; Gupta, M. ; Wühr, M. ; Silhavy, T. J. The Synthetic Phenotype of ΔbamB ΔbamE Double Mutants Results from a Lethal Jamming of the Bam Complex by the Lipoprotein RcsF. mBio 2019, 10, e00662-19. Publisher's VersionAbstract
The selective permeability of the Gram-negative outer membrane (OM)
is maintained by integral -barrel outer membrane proteins (OMPs). The heteropentomeric
-barrel assembly machine (Bam) folds and inserts OMPs into the OM. Coordination
of the essential proteins BamA and BamD is critical for OMP assembly and
therefore the viability of the cell. The role of the nonessential lipoproteins BamBCE
has yet to be characterized; however, genetic evidence suggests that they have nonoverlapping
roles in OMP assembly. In this work, we quantify changes of the proteome
in the conditional lethal ΔbamB ΔbamE double mutant. We show that cells
lacking BamB and BamE have a global OMP defect that is a result of a lethal obstruction
of an assembly-competent Bam complex by the lipoprotein RcsF. RcsF is a
stress-sensing lipoprotein that is threaded through the lumen of abundant -barrel
OMPs by the Bam complex to expose the amino terminus on the cell surface. We
demonstrate that simply removing this lipoprotein corrects the severe OMP assembly
defect of the double mutant nearly as efficiently as a previously isolated suppressor
mutation in bamA. We propose that BamB and BamE play crucial, nonoverlapping
roles to coordinate the activities of BamA and BamD during OMP
biogenesis.
2019_hart_silhavy_mbio.pdf
Peshkin, L. ; Lukyanov, A. ; Kalocsay, M. ; Gage, R. M. ; Wang, D. Z. ; Pells, T. J. ; Karimi, K. ; Vize, P. D. ; Wühr, M. ; Kirschner, M. W. The protein repertoire in early vertebrate embryogenesis. bioRxiv 2019. Publisher's VersionAbstract
We present an unprecedentedly comprehensive characterization of protein
dynamics across early development in Xenopus laevis, available immediately via a convenient
Web portal. This resource allows interrogation of the protein expression data in conjunction with
other data modalities such as genome wide mRNA expression. This study provides detailed
data for absolute levels of ~14K unique Xenopus proteins representing homologues of ~9K
unique human genes -- a rich resource for developmental biologists. The purpose of this
manuscript is limited to presenting and releasing the data browser.
2019_peshkin_kirschner_biorxiv.pdf
Tye, B. W. ; Commins, N. ; Ryazanova, L. V. ; Wühr, M. ; Springer, M. ; Pincus, D. ; Churchman, S. L. Proteotoxicity from aberrant ribosome biogenesis compromises cell fitness. eLife 2019, 8:e43002. Publisher's VersionAbstract
To achieve maximal growth, cells must manage a massive economy of ribosomal proteins (r-proteins) and RNAs (rRNAs) to produce thousands of ribosomes every minute. Although ribosomes are essential in all cells, natural disruptions to ribosome biogenesis lead to heterogeneous phenotypes. Here, we model these perturbations in Saccharomyces cerevisiae and show that challenges to ribosome biogenesis result in acute loss of proteostasis. Imbalances in the synthesis of r-proteins and rRNAs lead to the rapid aggregation of newly synthesized orphan r-proteins and compromise essential cellular processes, which cells alleviate by activating proteostasis genes. Exogenously bolstering the proteostasis network increases cellular fitness in the face of challenges to ribosome assembly, demonstrating the direct contribution of orphan r-proteins to cellular phenotypes. We propose that ribosome assembly is a key vulnerability of proteostasis maintenance in proliferating cells that may be compromised by diverse genetic, environmental, and xenobiotic perturbations that generate orphan r-proteins.
2019_tye_churchman_elife.pdf
Nguyen, T. ; Mitchison, T. J. ; Wühr, M. Immunofluorescence of Microtubule Assemblies in Amphibian Oocytes and Early Embryos. Methods Mol Biol. 2019, 1920, 17-32. Publisher's VersionAbstract
Amphibian oocytes and embryos are classical models to study cellular and developmental processes. For these studies, it is often advantageous to visualize protein organization. However, the large size and yolk distribution make imaging of deep structures in amphibian zygotes challenging. Here we describe in detail immunofluorescence (IF) protocols for imaging microtubule assemblies in early amphibian development. We developed these protocols to elucidate how the cell division machinery adapts to drastic changes in embryonic cell sizes. We describe how to image mitotic spindles, microtubule asters, chromosomes, and nuclei in whole-mount embryos, even when they are hundreds of micrometers removed from the embryo’s surface. Though the described methods were optimized for microtubule assemblies, they have also proven useful for the visualization of other proteins.
2019_nguyen_wuhr_methodsmolbio.pdf
Pappireddi, N. ; Martin, L. ; Wühr, M. A Review on Quantitative Multiplexed Proteomics. ChemBioChem 2019. Publisher's VersionAbstract
Over the last few decades, mass spectrometry‐based proteomics has become an increasingly powerful tool that is now able to routinely detect and quantify thousands of proteins. A major advance for global protein quantification was the introduction of isobaric tags, which in a single experiment enable the global quantification of proteins across multiple samples. In this review, we refer to these methods as multiplexed proteomics. We discuss the principles, advantages, and drawbacks of various multiplexed proteomics techniques, and compare them to alternative approaches. We discuss how the emerging combination of multiplexing with targeted proteomics might enable the reliable and high‐quality quantification of very low‐abundance proteins across multiple conditions. Lastly, we suggest that fusing multiplexed proteomics with data‐independent acquisition approaches might enable the comparison of hundreds of different samples without missing values while maintaining the superb measurement precision and accuracy obtainable with isobaric tag quantification.
2019_pappireddi_wuhr_chembiochem.pdf
Nguyen, T. ; Pappireddi, N. ; Wühr, M. Proteomics of nucleocytoplasmic partitioning. Current Opinion in Chemical Biology 2019, 2019, 55–63. Publisher's VersionAbstract

The partitioning of the proteome between nucleus and cytoplasm affects nearly every aspect of eukaryotic biology. Despite this central role, we still have a poor understanding of which proteins localize in the nucleus and how this varies in different cell types and conditions. Recent advances in quantitative proteomics and high-throughput imaging are starting to close this knowledge gap. Studies on protein interaction are beginning to reveal the spectrum of cargos of nuclear import and export receptors.
We anticipate that it will soon be possible to predict each protein’s nucleocytoplasmic localization based on its importin/exportin interactions and its estimated diffusion rate through the nuclear pore. This insight is likely to provide us with a fundamental understanding of how cells use nucleocytoplasmic partitioning to encode and relay information.

2018_nguyen_wuhr_curropinchembio.pdf
2018
Gupta, M. ; Sonnett, M. ; Ryazanova, L. ; Presler, M. ; Wühr, M. Quantitative Proteomics of Xenopus Embryos I, Sample Preparation. Methods in molecular biology 2018, 175–194. Publisher's VersionAbstract
Xenopus oocytes and embryos are model systems optimally suited for quantitative proteomics. This is due to the availability of large amount of protein material and the ease of physical manipulation. Furthermore, facile in vitro fertilization provides superbly synchronized embryos for cell cycle and developmental stages. Here, we detail protocols developed over the last few years for sample preparation of multiplexed proteomics with TMT-tags followed by quantitative mass spectrometry analysis using the MultiNotch MS3 approach. In this approach, each condition is barcoded with an isobaric tag at the peptide level. After barcoding, samples are combined and the relative abundance of \textasciitilde100,000 peptides is quantified on a mass spectrometer. High reproducibility of the sample preparation process prior to peptides being tagged and combined is of upmost importance for obtaining unbiased data. Otherwise, differences in sample handling can inadvertently appear as biological changes. We detail and exemplify the application of our sample workflow on an embryonic time-series of ten developmental stages of Xenopus laevis embryos ranging from the egg to stage 35 (just before hatching). Our accompanying paper (Chapter 14 ) details a bioinformatics pipeline to analyze the quality of the given sample preparation and strategies to convert spectra of X. laevis peptides into biologically interpretable data.
2018_gupta_wuhr_methods_molbio.pdf
Sonnett, M. ; Gupta, M. ; Nguyen, T. ; Wühr, M. Quantitative Proteomics for Xenopus Embryos II, Data Analysis. Methods in molecular biology 2018, 1865, 195-215. Publisher's VersionAbstract
The oocytes, embryos, and cell-free lysates of the frog Xenopus laevis have emerged as powerful models for quantitative proteomic experiments. In the accompanying paper (Chapter 13) we describe how to prepare samples and acquire multiplexed proteomics spectra from those. As an illustrative example we use a 10-stage developmental time series from the egg to stage 35 (just before hatching). Here, we outline how to convert the ~700,000 acquired mass spectra from this time series into protein expression dynamics for ~9000 proteins. We first outline a preliminary quality-control analysis to discover any errors that occurred during sample preparation. We discuss how peptide and protein identification error rates are controlled, and how peptide and protein species are quantified. Our analysis relies on the freely available MaxQuant proteomics pipeline. Finally, we demonstrate how to start interpreting this large dataset by clustering and gene-set enrichment analysis.
2018_sonnett_wuhr_methods_molbio.pdf
Sonnett, M. ; Yeung, E. ; Wühr, M. Accurate, Sensitive, and Precise Multiplexed Proteomics Using the Complement Reporter Ion Cluster. Analytical Chemistry 2018. Publisher's VersionAbstract
Quantitative analysis of proteomes across multiple time points, organelles, and
perturbations is essential for understanding both fundamental biology and disease
states. The development of isobaric tags (e.g. TMT) have enabled the simultaneous
measurement of peptide abundances across several different conditions. These
multiplexed approaches are promising in principle because of advantages in throughput
and measurement quality. However, in practice existing multiplexing approaches suffer
from key limitations. In its simple implementation (TMT-MS2), measurements are
distorted by chemical noise leading to poor measurement accuracy. The current state-ofthe-
art (TMT-MS3) addresses this, but requires specialized quadrupole-iontrap-Orbitrap
instrumentation. The complement reporter ion approach (TMTc) produces high accuracy
measurements and is compatible with many more instruments, like quadrupole-
Orbitraps. However, the required deconvolution of the TMTc cluster leads to poor
measurement precision. Here, we introduce TMTc+, which adds the modeling of the MS2-
isolation step into the deconvolution algorithm. The resulting measurements are
comparable in precision to TMT-MS3/MS2. The improved duty cycle, and lower filtering
requirements make TMTc+ more sensitive than TMT-MS3 and comparable with TMT-MS2.
At the same time, unlike TMT-MS2, TMTc+ is exquisitely able to distinguish signal from
chemical noise even outperforming TMT-MS3. Lastly, we compare TMTc+ to quantitative
label-free proteomics of total HeLa lysate and find that TMTc+ quantifies 7.8k versus 3.9k
proteins in a 5-plex sample. At the same time the median coefficient of variation
improves from 13% to 4%. Thus, TMTc+ advances quantitative proteomics by enabling
accurate, sensitive, and precise multiplexed experiments on more commonly used
instruments.
2018_sonnett_wuhr_analytical_chemistry.pdf
Stadlmeier, M. ; Bogena, J. ; Wallner, M. ; Wühr, M. ; Carell, T. A sulfoxide-based isobaric labelling reagent for accurate quantitative mass spectrometry. Angewandte Chemie 2018.Abstract
Modern proteomics requires reagents for exact quantification of peptides in complex mixtures. Peptide labelling is most typically achieved with isobaric tags that consist of a balancer and a reporter part that separate in the gas phase. An ingenious distribution of stable isotopes provides multiple reagents with identical molecular weight but a different mass of the reporter groups, allowing relative quantification of multiple samples in one measurement. Current generation reagents require a high fragmentation energy for cleavage, leading to incomplete fragmentation and hence loss of signal intensity. Here we report a new isobaric labelling reagent, where the balancer and the reporter are linked by a sulfoxide group, which, based on the sulfoxide pyrolysis, leads to easy and asymmetric cleavage at low fragmentation energy. The fragmentation of our new design is significantly improved, yielding more intense complementary ion signals, allowing complementary ion cluster analysis as well.
2018_stadlmeier_carell_angewandte.pdf
2017
Presler, M. ; Van Itallie, E. ; Klein, A. M. ; Kunz, R. ; Coughlin, M. L. ; Peshkin, L. ; Gygi, S. P. ; Wühr, M. *; Kirschner, M. W. *. Proteomics of phosphorylation and protein dynamics during fertilization and meiotic exit in the Xenopus egg. PNAS 2017.Abstract
Fertilization releases the meiotic arrest and initiates the events that prepare the egg for the ensuing developmental program. Protein degradation and phosphorylation are known to regulate protein activity during this process. However, the full extent of protein loss and phosphoregulation is still unknown. We examined absolute protein and phosphosite dynamics of the fertilization response by mass spectrometry-based proteomics in electroactivated eggs. To do this, we developed an approach for calculating the stoichiometry of phosphosites from multiplexed proteomics that is compatible with dynamic, stable, and multisite phosphorylation. Overall, the data suggest that degradation is limited to a few low-abundance proteins. However, this degradation promotes extensive dephosphorylation that occurs over a wide range of abundances during meiotic exit. We also show that eggs release a large amount of protein into the medium just after fertilization, most likely related to the blocks to polyspermy. Concomitantly, there is a substantial increase in phosphorylation likely tied to calcium-activated kinases. We identify putative degradation targets and components of the slow block to polyspermy. The analytical approaches demonstrated here are broadly applicable to studies of dynamic biological systems.
2017_presler_kirschner_pnas.pdf
Sonnett, M. ; Yeung, E. ; Wühr, M. Accurate, Sensitive, and Precise Multiplexed Proteomics using the Complement Reporter Ion Cluster. bioRxiv 2017. Publisher's VersionAbstract

Quantitative analysis of proteomes across multiple time points, organelles, and perturbations is essential for understanding both fundamental biology and disease states. The development of isobaric tags (e.g. TMT) have enabled the simultaneous measurement of peptide abundances across several different conditions. These multiplexed approaches are promising in principle because of advantages in throughput and measurement quality. However, in practice existing multiplexing approaches suffer from key limitations. In its simple implementation (TMT-MS2), measurements are distorted by chemical noise leading to poor measurement accuracy. The current state-ofthe-art (TMT-MS3) addresses this, but requires specialized quadrupole-iontrap-Orbitrap instrumentation. The complement reporter ion approach (TMTc) produces high accuracy measurements and is compatible with many more instruments, like quadrupoleOrbitraps. However, the required deconvolution of the TMTc cluster leads to poor measurement precision. Here, we introduce TMTc+, which adds the modeling of the MS2- isolation step into the deconvolution algorithm. The resulting measurements are comparable in precision to TMT-MS3/MS2. The improved duty cycle, and lower filtering requirements make TMTc+ more sensitive than TMT-MS3 and comparable with TMT-MS2. At the same time, unlike TMT-MS2, TMTc+ is exquisitely able to distinguish signal from chemical noise even outperforming TMT-MS3. Lastly, we compare TMTc+ to quantitative label-free proteomics of total HeLa lysate and find that TMTc+ quantifies 7.8k versus 3.9k proteins in a 5-plex sample. At the same time the median coefficient of variation improves from 13% to 4%. Thus, TMTc+ advances quantitative proteomics by enabling accurate, sensitive, and precise multiplexed experiments on more commonly used instruments.

2017_sonnett_wuhr_biorxiv_v2.pdf
Presler, M. S. ; Van Itallie, E. ; Klein, A. M. ; Kunz, R. ; Coughlin, P. ; Peshkin, L. ; Gygi, S. ; Wühr, M. *; Kirschner, M. *. Proteomics of phosphorylation and protein dynamics during fertilization and meiotic exit in the Xenopus egg. bioRxiv 2017, 145086.Abstract

Fertilization triggers release from meiotic arrest and initiates events that prepare for the ensuing developmental program. Protein degradation and phosphorylation are known to regulate protein activity during this process. However, the full extent of protein loss and phospho-regulation is still unknown. We examined absolute protein and phospho-site dynamics after fertilization by mass spectrometry-based proteomics. To do this, we developed a new approach for calculating the stoichiometry of phospho-sites from multiplexed proteomics that is compatible with dynamic, stable and multi-site phosphorylation. Overall, the data suggest that degradation is limited to a few low abundance proteins. However, this degradation promotes extensive dephosphorylation that occurs over a wide range of abundances during meiotic exit. We also show that eggs release a large amount of protein into the medium just after fertilization, most likely related to the blocks to polyspermy. Concomitantly, there is a substantial increase in phosphorylation likely tied to calcium activated kinases. We identify putative degradation targets as well as new components of the block to polyspermy. The analytical approaches demonstrated here are broadly applicable to studies of dynamic biological systems.

2017_presler_kirschner_biorxiv.pdf
Remillard, D. ; Buckley, D. L. ; Paulk, J. ; Brien, G. L. ; Sonnett, M. ; Seo, H. S. ; Dastjerdi, S. ; Wühr, M. ; Dhe-Paganon, S. ; Armstrong, S. A. ; et al. Degradation of the BAF Complex Factor BRD9 by Heterobifunctional Ligands. Angewandte Chemie 2017, 56, 5738-5743.Abstract

The bromodomain-containing protein BRD9, a subunit of the human BAF (SWI/SNF) nucleosome remodeling complex, has emerged as an attractive therapeutic target in cancer. Despite the development of chemical probes targeting the BRD9 bromodomain, there is a limited understanding of BRD9 function beyond acetyl-lysine recognition. We have therefore created the first BRD9-directed chemical degraders, through iterative design and testing of heterobifunctional ligands that bridge the BRD9 bromodomain and the cereblon E3 ubiquitin ligase complex. Degraders of BRD9 exhibit markedly enhanced potency compared to parental ligands (10- to 100-fold). Parallel study of degraders with divergent BRD9-binding chemotypes in models of acute myeloid leukemia resolves bromodomain polypharmacology in this emerging drug class. Together, these findings reveal the tractability of non-BET bromodomain containing proteins to chemical degradation, and highlight lead compound dBRD9 as a tool for the study of BRD9.

2017_remillard_bradner_angewandte.pdf
Tassan, J. P. ; Wühr, M. ; Hatte, G. ; Kubiak, J. Asymmetries in Cell Division, Cell Size, and Furrowing in the Xenopus laevis Embryo. Results and problems in cell differentiation 2017, 61, 243-260.Abstract

Asymmetric cell divisions produce two daughter cells with distinct fate. During embryogenesis, this mechanism is fundamental to build tissues and organs because it generates cell diversity. In adults, it remains crucial to maintain stem cells. The enthusiasm for asymmetric cell division is not only motivated by the beauty of the mechanism and the fundamental questions it raises, but has also very pragmatic reasons. Indeed, misregulation of asymmetric cell divisions is believed to have dramatic consequences potentially leading to pathogenesis such as cancers. In diverse model organisms, asymmetric cell divisions result in two daughter cells, which differ not only by their fate but also in size. This is the case for the early Xenopus laevis embryo, in which the two first embryonic divisions are perpendicular to each other and generate two pairs of blastomeres, which usually differ in size: one pair of blastomeres is smaller than the other. Small blastomeres will produce embryonic dorsal structures, whereas the larger pair will evolve into ventral structures. Here, we present a speculative model on the origin of the asymmetry of this cell division in the Xenopus embryo. We also discuss the apparently coincident asymmetric distribution of cell fate determinants and cell-size asymmetry of the 4-cell stage embryo. Finally, we discuss the asymmetric furrowing during epithelial cell cytokinesis occurring later during Xenopus laevis embryo development.

2017_tassan_kubiak_differentiation_and_cancer.pdf
Erickson, B. K. ; Rose, C. M. ; Braun, C. R. ; Erickson, A. R. ; Knott, J. ; McAlister, G. C. ; Wühr, M. ; Paulo, J. A. ; Everley, R. A. ; Gygi, S. P. A Strategy to Combine Sample Multiplexing with Targeted Proteomics Assays for High-Throughput Protein Signature Characterization. Molecular Cell 2017.Abstract

Targeted mass spectrometry assays for protein quantitation monitor peptide surrogates, which are easily multiplexed to target many peptides in a single assay. However, these assays have generally not taken advantage of sample multiplexing, which allows up to ten analyses to occur in parallel. We present a two-dimensional multiplexing workflow that utilizes synthetic peptides for each protein to prompt the simultaneous quantification of >100 peptides from up to ten mixed sample conditions. We demonstrate that targeted analysis of unfractionated lysates (2 hr) accurately reproduces the quantification of fractionated lysates (72 hr analysis) while obviating the need for peptide detection prior to quantification. We targeted 131 peptides corresponding to 69 proteins across all 60 National Cancer Institute cell lines in biological triplicate, analyzing 180 samples in only 48 hr (the equivalent of 16 min/sample). These data further elucidated a correlation between the expression of key proteins and their cellular response to drug treatment.

2017_erickson_gygi_molecular_cell.pdf
Hasley, A. ; Chavez, S. ; Danilchik, M. ; Wühr, M. ; Pelegri, F. Vertebrate Embryonic Cleavage Pattern Determination. Advances in experimental medicine and biology 2017, 953, 117-171.Abstract

The pattern of the earliest cell divisions in a vertebrate embryo lays the groundwork for later developmental events such as gastrulation, organogenesis, and overall body plan establishment. Understanding these early cleavage patterns and the mechanisms that create them is thus crucial for the study of vertebrate development. This chapter describes the early cleavage stages for species representing ray-finned fish, amphibians, birds, reptiles, mammals, and proto-vertebrate ascidians and summarizes current understanding of the mechanisms that govern these patterns. The nearly universal influence of cell shape on orientation and positioning of spindles and cleavage furrows and the mechanisms that mediate this influence are discussed. We discuss in particular models of aster and spindle centering and orientation in large embryonic blastomeres that rely on asymmetric internal pulling forces generated by the cleavage furrow for the previous cell cycle. Also explored are mechanisms that integrate cell division given the limited supply of cellular building blocks in the egg and several-fold changes of cell size during early development, as well as cytoskeletal specializations specific to early blastomeres including processes leading to blastomere cohesion. Finally, we discuss evolutionary conclusions beginning to emerge from the contemporary analysis of the phylogenetic distributions of cleavage patterns. In sum, this chapter seeks to summarize our current understanding of vertebrate early embryonic cleavage patterns and their control and evolution.

2017_hasley_pelegri_adv_exp_med_biol.pdf
2016
Pierre, A. ; Salle, J. ; Wühr, M. ; Minc, N. Generic Theoretical Models to Predict Division Patterns of Cleaving Embryos. Developmental Cell 2016, 39, 667-682.Abstract

Life for all animals starts with a precise 3D choreography of reductive divisions of the fertilized egg, known as cleavage patterns. These patterns exhibit conserved geometrical features and striking interspecies invariance within certain animal classes. To identify the generic rules that may govern these morphogenetic events, we developed a 3D-modeling framework that iteratively infers blastomere division positions and orientations, and consequent multicellular arrangements. From a minimal set of parameters, our model predicts detailed features of cleavage patterns in the embryos of fishes, amphibians, echinoderms, and ascidians, as well as the genetic and physical perturbations that alter these patterns. This framework demonstrates that a geometrical system based on length-dependent microtubule forces that probe blastomere shape and yolk gradients, biased by cortical polarity domains, may dictate division patterns and overall embryo morphogenesis. These studies thus unravel the default self-organization rules governing early embryogenesis and how they are altered by deterministic regulatory layers.

2016_pierre_minc_developmental_cell.pdf

Pages