Tran, Phong Lan Thao, et al.PIF1 family DNA helicases suppress R-loop mediated genome instability at tRNA genes.”. Nat Commun 8 (2017): , 8, 15025. Web.Abstract
Saccharomyces cerevisiae encodes two Pif1 family DNA helicases, Pif1 and Rrm3. Rrm3 promotes DNA replication past stable protein complexes at tRNA genes (tDNAs). We identify a new role for the Pif1 helicase: promotion of replication and suppression of DNA damage at tDNAs. Pif1 binds multiple tDNAs, and this binding is higher in rrm3Δ cells. Accumulation of replication intermediates and DNA damage at tDNAs is higher in pif1Δ rrm3Δ than in rrm3Δ cells. DNA damage at tDNAs in the absence of these helicases is suppressed by destabilizing R-loops while Pif1 and Rrm3 binding to tDNAs is increased upon R-loop stabilization. We propose that Rrm3 and Pif1 promote genome stability at tDNAs by displacing the stable multi-protein transcription complex and by removing R-loops. Thus, we identify tDNAs as a new source of R-loop-mediated DNA damage. Given their large number and high transcription rate, tDNAs may be a potent source of genome instability.
Geronimo, Carly L, and Virginia A Zakian. “Getting it done at the ends: Pif1 family DNA helicases and telomeres.”. DNA Repair (Amst) 44 (2016): , 44, 151-8. Web.Abstract
It is widely appreciated that the ends of linear DNA molecules cannot be fully replicated by the conventional replication apparatus. Less well known is that semi-conservative replication of telomeric DNA also presents problems for DNA replication. These problems likely arise from the atypical chromatin structure of telomeres, the GC-richness of telomeric DNA that makes it prone to forming DNA secondary structures, and from RNA-DNA hybrids, formed by transcripts of one or both DNA strands. Given the different aspects of telomeres that complicate their replication, it is not surprising that multiple DNA helicases promote replication of telomeric DNA. This review focuses on one such class of DNA helicases, the Pif1 family of 5'-3' DNA helicases. In budding and fission yeasts, Pif1 family helicases impact both telomerase-mediated and semi-conservative replication of telomeric DNA as well as recombination-mediated telomere lengthening.
McDonald, Karin R, et al.Pfh1 Is an Accessory Replicative Helicase that Interacts with the Replisome to Facilitate Fork Progression and Preserve Genome Integrity.”. PLoS Genet 12.9 (2016): , 12, 9, e1006238. Web.Abstract
Replicative DNA helicases expose the two strands of the double helix to the replication apparatus, but accessory helicases are often needed to help forks move past naturally occurring hard-to-replicate sites, such as tightly bound proteins, RNA/DNA hybrids, and DNA secondary structures. Although the Schizosaccharomyces pombe 5'-to-3' DNA helicase Pfh1 is known to promote fork progression, its genomic targets, dynamics, and mechanisms of action are largely unknown. Here we address these questions by integrating genome-wide identification of Pfh1 binding sites, comprehensive analysis of the effects of Pfh1 depletion on replication and DNA damage, and proteomic analysis of Pfh1 interaction partners by immunoaffinity purification mass spectrometry. Of the 621 high confidence Pfh1-binding sites in wild type cells, about 40% were sites of fork slowing (as marked by high DNA polymerase occupancy) and/or DNA damage (as marked by high levels of phosphorylated H2A). The replication and integrity of tRNA and 5S rRNA genes, highly transcribed RNA polymerase II genes, and nucleosome depleted regions were particularly Pfh1-dependent. The association of Pfh1 with genomic integrity at highly transcribed genes was S phase dependent, and thus unlikely to be an artifact of high transcription rates. Although Pfh1 affected replication and suppressed DNA damage at discrete sites throughout the genome, Pfh1 and the replicative DNA polymerase bound to similar extents to both Pfh1-dependent and independent sites, suggesting that Pfh1 is proximal to the replication machinery during S phase. Consistent with this interpretation, Pfh1 co-purified with many key replisome components, including the hexameric MCM helicase, replicative DNA polymerases, RPA, and the processivity clamp PCNA in an S phase dependent manner. Thus, we conclude that Pfh1 is an accessory DNA helicase that interacts with the replisome and promotes replication and suppresses DNA damage at hard-to-replicate sites. These data provide insight into mechanisms by which this evolutionarily conserved helicase helps preserve genome integrity.
Webb, Christopher J, and Virginia A Zakian. “Telomerase RNA is more than a DNA template.”. RNA Biol 13.8 (2016): , 13, 8, 683-9. Web.Abstract
The addition of telomeric DNA to chromosome ends is an essential cellular activity that compensates for the loss of genomic DNA that is due to the inability of the conventional DNA replication apparatus to duplicate the entire chromosome. The telomerase reverse transcriptase and its associated RNA bind to the very end of the telomere via a sequence in the RNA and specific protein-protein interactions. Telomerase RNA also provides the template for addition of new telomeric repeats by the reverse-transcriptase protein subunit. In addition to the template, there are 3 other conserved regions in telomerase RNA that are essential for normal telomerase activity. Here we briefly review the conserved core regions of telomerase RNA and then focus on a recent study in fission yeast that determined the function of another conserved region in telomerase RNA called the Stem Terminus Element (STE). (1) The STE is distant from the templating core of telomerase in both the linear and RNA secondary structure, but, nonetheless, affects the fidelity of telomere sequence addition and, in turn, the ability of telomere binding proteins to bind and protect chromosome ends. We will discuss possible mechanisms of STE action and the suitability of the STE as an anti-cancer target.
Lin, Kah Wai, and Virginia A Zakian. “21st Century Genetics: Mass Spectrometry of Yeast Telomerase.”. Cold Spring Harb Symp Quant Biol 80 (2015): , 80, 111-6. Web.Abstract
Telomerase is a specialized reverse transcriptase that maintains the ends of chromosomes in almost all eukaryotes. The core of telomerase consists of telomerase RNA and the reverse transcriptase that uses a short segment without the RNA to template the addition of telomeric repeats. In addition, one or more accessory proteins are required for telomerase action in vivo. The best-studied accessory protein is Est1, which is conserved from yeasts to humans. In budding yeast, Est1 has two critical in vivo functions: By interaction with Cdc13, a telomere-binding protein, it recruits telomerase to telomeres, and it also increases telomerase activity. Although budding yeast telomerase is highly regulated by the cell cycle, Est1 is the only telomerase subunit whose abundance is cell cycle-regulated. Close to 400 yeast genes are reported to affect telomere length, although the specific function of most of them is unknown. With the goal of identifying novel telomerase regulators by mass spectrometry, we developed methods for purifying yeast telomerase and its associated proteins. We summarize the methods we used and describe the experiments that show that four telomerase-associated proteins identified by mass spectrometry, none of which had been linked previously to telomeres, affect telomere length and cell cycle regulation of telomerase by controlling Est1 abundance.
Stundon, Jennifer L, and Virginia A Zakian. “Identification of Saccharomyces cerevisiae Genes Whose Deletion Causes Synthetic Effects in Cells with Reduced Levels of the Nuclear Pif1 DNA Helicase.”. G3 (Bethesda) 512 (2015): , 5, 12, 2913-8. Web.Abstract
The multifunctional Saccharomyces cerevisiae Pif1 DNA helicase affects the maintenance of telomeric, ribosomal, and mitochondrial DNAs, suppresses DNA damage at G-quadruplex motifs, influences the processing of Okazaki fragments, and promotes breakage induced replication. All of these functions require the ATPase/helicase activity of the protein. Owing to Pif1's critical role in the maintenance of mitochondrial DNA, pif1Δ strains quickly generate respiratory deficient cells and hence grow very slowly. This slow growth makes it difficult to carry out genome-wide synthetic genetic analysis in this background. Here, we used a partial loss of function allele of PIF1, pif1-m2, which is mitochondrial proficient but has reduced abundance of nuclear Pif1. Although pif1-m2 is not a null allele, pif1-m2 cells exhibit defects in telomere maintenance, reduced suppression of damage at G-quadruplex motifs and defects in breakage induced replication. We performed a synthetic screen to identify nonessential genes with a synthetic sick or lethal relationship in cells with low abundance of nuclear Pif1. This study identified eleven genes that were synthetic lethal (APM1, ARG80, CDH1, GCR1, GTO3, PRK1, RAD10, SKT5, SOP4, UMP1, and YCK1) and three genes that were synthetic sick (DEF1, YIP4, and HOM3) with pif1-m2.
Phillips, Jane A, et al.The pif1 helicase, a negative regulator of telomerase, acts preferentially at long telomeres.”. PLoS Genet 11.4 (2015): , 11, 4, e1005186. Web.Abstract
Telomerase, the enzyme that maintains telomeres, preferentially lengthens short telomeres. The S. cerevisiae Pif1 DNA helicase inhibits both telomerase-mediated telomere lengthening and de novo telomere addition at double strand breaks (DSB). Here, we report that the association of the telomerase subunits Est2 and Est1 at a DSB was increased in the absence of Pif1, as it is at telomeres, suggesting that Pif1 suppresses de novo telomere addition by removing telomerase from the break. To determine how the absence of Pif1 results in telomere lengthening, we used the single telomere extension assay (STEX), which monitors lengthening of individual telomeres in a single cell cycle. In the absence of Pif1, telomerase added significantly more telomeric DNA, an average of 72 nucleotides per telomere compared to the 45 nucleotides in wild type cells, and the fraction of telomeres lengthened increased almost four-fold. Using an inducible short telomere assay, Est2 and Est1 no longer bound preferentially to a short telomere in pif1 mutant cells while binding of Yku80, a telomere structural protein, was unaffected by the status of the PIF1 locus. Two experiments demonstrate that Pif1 binding is affected by telomere length: Pif1 (but not Yku80) -associated telomeres were 70 bps longer than bulk telomeres, and in the inducible short telomere assay, Pif1 bound better to wild type length telomeres than to short telomeres. Thus, preferential lengthening of short yeast telomeres is achieved in part by targeting the negative regulator Pif1 to long telomeres.
Lin, Kah-Wai, et al.Proteomics of yeast telomerase identified Cdc48-Npl4-Ufd1 and Ufd4 as regulators of Est1 and telomere length.”. Nat Commun 6 (2015): , 6, 8290. Web.Abstract
Almost 400 genes affect yeast telomere length, including Est1, which is critical for recruitment and activation of telomerase. Here we use mass spectrometry to identify novel telomerase regulators by their co-purification with the telomerase holoenzyme. In addition to all known subunits, over 100 proteins are telomerase associated, including all three subunits of the essential Cdc48-Npl4-Ufd1 complex as well as three E3 ubiquitin ligases. The Cdc48 complex is evolutionarily conserved and targets ubiquitinated proteins for degradation. Est1 levels are ∼40-fold higher in cells with reduced Cdc48, yet, paradoxically, telomeres are shorter. Furthermore, Est1 is ubiquitinated and its cell cycle-regulated abundance is lost in Cdc48-deficient cells. Deletion of the telomerase-associated E3 ligase, Ufd4, in cdc48-3 cells further increases Est1 abundance but suppresses the telomere length phenotype of the single mutant. These data argue that, in concert with Ufd4, the Cdc48 complex regulates telomerase by controlling the level and activity of Est1.
Webb, Christopher J, and Virginia A Zakian. “Telomerase RNA stem terminus element affects template boundary element function, telomere sequence, and shelterin binding.”. Proc Natl Acad Sci U S A 112.36 (2015): , 112, 36, 11312-7. Web.Abstract
The stem terminus element (STE), which was discovered 13 y ago in human telomerase RNA, is required for telomerase activity, yet its mode of action is unknown. We report that the Schizosaccharomyces pombe telomerase RNA, TER1 (telomerase RNA 1), also contains a STE, which is essential for telomere maintenance. Cells expressing a partial loss-of-function TER1 STE allele maintained short stable telomeres by a recombination-independent mechanism. Remarkably, the mutant telomere sequence was different from that of wild-type cells. Generation of the altered sequence is explained by reverse transcription into the template boundary element, demonstrating that the STE helps maintain template boundary element function. The altered telomeres bound less Pot1 (protection of telomeres 1) and Taz1 (telomere-associated in Schizosaccharomyces pombe 1) in vivo. Thus, the S. pombe STE, although distant from the template, ensures proper telomere sequence, which in turn promotes proper assembly of the shelterin complex.
Webb, Christopher J, and Virginia A Zakian. “Telomere les(i/s)ons from a telomerase RNA mutant.”. Cell Cycle 14.24 (2015): , 14, 24, 3769-70. Web.
Sabouri, Nasim, John A Capra, and Virginia A Zakian. “The essential Schizosaccharomyces pombe Pfh1 DNA helicase promotes fork movement past G-quadruplex motifs to prevent DNA damage.”. BMC Biol 12 (2014): , 12, 101. Web.Abstract
BACKGROUND: G-quadruplexes (G4s) are stable non-canonical DNA secondary structures consisting of stacked arrays of four guanines, each held together by Hoogsteen hydrogen bonds. Sequences with the ability to form these structures in vitro, G4 motifs, are found throughout bacterial and eukaryotic genomes. The budding yeast Pif1 DNA helicase, as well as several bacterial Pif1 family helicases, unwind G4 structures robustly in vitro and suppress G4-induced DNA damage in S. cerevisiae in vivo. RESULTS: We determined the genomic distribution and evolutionary conservation of G4 motifs in four fission yeast species and investigated the relationship between G4 motifs and Pfh1, the sole S. pombe Pif1 family helicase. Using chromatin immunoprecipitation combined with deep sequencing, we found that many G4 motifs in the S. pombe genome were associated with Pfh1. Cells depleted of Pfh1 had increased fork pausing and DNA damage near G4 motifs, as indicated by high DNA polymerase occupancy and phosphorylated histone H2A, respectively. In general, G4 motifs were underrepresented in genes. However, Pfh1-associated G4 motifs were located on the transcribed strand of highly transcribed genes significantly more often than expected, suggesting that Pfh1 has a function in replication or transcription at these sites. CONCLUSIONS: In the absence of functional Pfh1, unresolved G4 structures cause fork pausing and DNA damage of the sort associated with human tumors.
Bochman, Matthew L, et al.Hrq1, a homolog of the human RecQ4 helicase, acts catalytically and structurally to promote genome integrity.”. Cell Rep 62 (2014): , 6, 2, 346-56. Web.Abstract
Human RecQ4 (hRecQ4) affects cancer and aging but is difficult to study because it is a fusion between a helicase and an essential replication factor. Budding yeast Hrq1 is homologous to the disease-linked helicase domain of RecQ4 and, like hRecQ4, is a robust 3'-5' helicase. Additionally, Hrq1 has the unusual property of forming heptameric rings. Cells lacking Hrq1 exhibited two DNA damage phenotypes: hypersensitivity to DNA interstrand crosslinks (ICLs) and telomere addition to DNA breaks. Both activities are rare; their coexistence in a single protein is unprecedented. Resistance to ICLs requires helicase activity, but suppression of telomere addition does not. Hrq1 also affects telomere length by a noncatalytic mechanism, as well as telomerase-independent telomere maintenance. Because Hrq1 binds telomeres in vivo, it probably affects them directly. Thus, the tumor-suppressing activity of RecQ4 could be due to a role in ICL repair and/or suppression of de novo telomere addition.
Zhou, Ruobo, et al.Periodic DNA patrolling underlies diverse functions of Pif1 on R-loops and G-rich DNA.”. Elife 3 (2014): , 3, e02190. Web.Abstract
Pif1 family helicases are conserved from bacteria to humans. Here, we report a novel DNA patrolling activity which may underlie Pif1's diverse functions: a Pif1 monomer preferentially anchors itself to a 3'-tailed DNA junction and periodically reel in the 3' tail with a step size of one nucleotide, extruding a loop. This periodic patrolling activity is used to unfold an intramolecular G-quadruplex (G4) structure on every encounter, and is sufficient to unwind RNA-DNA heteroduplex but not duplex DNA. Instead of leaving after G4 unwinding, allowing it to refold, or going beyond to unwind duplex DNA, Pif1 repeatedly unwinds G4 DNA, keeping it unfolded. Pif1-induced unfolding of G4 occurs in three discrete steps, one strand at a time, and is powerful enough to overcome G4-stabilizing drugs. The periodic patrolling activity may keep Pif1 at its site of in vivo action in displacing telomerase, resolving R-loops, and keeping G4 unfolded during replication, recombination and repair.DOI:
McDonald, Karin R, et al.The Pif1 family helicase Pfh1 facilitates telomere replication and has an RPA-dependent role during telomere lengthening.”. DNA Repair (Amst) 24 (2014): , 24, 80-6. Web.Abstract
Pif1 family helicases are evolutionary conserved 5'-3' DNA helicases. Pfh1, the sole Schizosaccharomyces pombe Pif1 family DNA helicase, is essential for maintenance of both nuclear and mitochondrial DNAs. Here we show that its nuclear functions include roles in telomere replication and telomerase action. Pfh1 promoted semi-conservative replication through telomeric DNA, as replication forks moved more slowly through telomeres when Pfh1 levels were reduced. Unlike other organisms, S. pombe cells overexpressing Pfh1 displayed markedly longer telomeres. Because this lengthening occurred in the absence of homologous recombination but not in a replication protein A mutant (rad11-D223Y) that has defects in telomerase function, it is probably telomerase-mediated. The effects of Pfh1 on telomere replication and telomere length are likely direct as Pfh1 exhibited high telomere binding in cells expressing endogenous levels of Pfh1. These findings argue that Pfh1 is a positive regulator of telomere length and telomere replication.
Webb, Christopher J, Yun Wu, and Virginia A Zakian. “DNA repair at telomeres: keeping the ends intact.”. Cold Spring Harb Perspect Biol 56 (2013). Web.Abstract
The molecular era of telomere biology began with the discovery that telomeres usually consist of G-rich simple repeats and end with 3' single-stranded tails. Enormous progress has been made in identifying the mechanisms that maintain and replenish telomeric DNA and the proteins that protect them from degradation, fusions, and checkpoint activation. Although telomeres in different organisms (or even in the same organism under different conditions) are maintained by different mechanisms, the disparate processes have the common goals of repairing defects caused by semiconservative replication through G-rich DNA, countering the shortening caused by incomplete replication, and postreplication regeneration of G tails. In addition, standard DNA repair mechanisms must be suppressed or modified at telomeres to prevent their being recognized and processed as DNA double-strand breaks. Here, we discuss the players and processes that maintain and regenerate telomere structure.
Wu, Yun, et al.Novel phosphorylation sites in the S. cerevisiae Cdc13 protein reveal new targets for telomere length regulation.”. J Proteome Res 12.1 (2013): , 12, 1, 316-27. Web.Abstract
The S. cerevisiae Cdc13 is a multifunctional protein with key roles in regulation of telomerase, telomere end protection, and conventional telomere replication, all of which are cell cycle-regulated processes. Given that phosphorylation is a key mechanism for regulating protein function, we identified sites of phosphorylation using nano liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS). We also determined phosphorylation abundance on both wild type (WT) and a telomerase deficient form of Cdc13, encoded by the cdc13-2 allele, in both G1 phase cells, when telomerase is not active, and G2/M phase cells, when it is. We identified 21 sites of in vivo phosphorylation, of which only five had been reported previously. In contrast, phosphorylation of two in vitro targets of the ATM-like Tel1 kinase, S249 and S255, was not detected. This result helps resolve conflicting data on the importance of phosphorylation of these residues in telomerase recruitment. Multiple residues showed differences in their cell cycle pattern of modification. For example, phosphorylation of S314 was significantly higher in the G2/M compared to the G1 phase and in WT versus mutant Cdc13, and a S314D mutation negatively affected telomere length. Our findings provide new targets in a key telomerase regulatory protein for modulation of telomere dynamics.
Paeschke, Katrin, et al.Pif1 family helicases suppress genome instability at G-quadruplex motifs.”. Nature 497.7450 (2013): , 497, 7450, 458-62. Web.Abstract
The Saccharomyces cerevisiae Pif1 helicase is the prototypical member of the Pif1 DNA helicase family, which is conserved from bacteria to humans. Here we show that exceptionally potent G-quadruplex unwinding is conserved among Pif1 helicases. Moreover, Pif1 helicases from organisms separated by more than 3 billion years of evolution suppressed DNA damage at G-quadruplex motifs in yeast. The G-quadruplex-induced damage generated in the absence of Pif1 helicases led to new genetic and epigenetic changes. Furthermore, when expressed in yeast, human PIF1 suppressed both G-quadruplex-associated DNA damage and telomere lengthening.
Di Domenico, Enea Gino, et al.Tel1 and Rad51 are involved in the maintenance of telomeres with capping deficiency.”. Nucleic Acids Res 41.13 (2013): , 41, 13, 6490-500. Web.Abstract
Vertebrate-like T2AG3 telomeres in tlc1-h yeast consist of short double-stranded regions and long single-stranded overhang (G-tails) and, although based on Tbf1-capping activity, they are capping deficient. Consistent with this idea, we observe Y' amplification because of homologous recombination, even in the presence of an active telomerase. In these cells, Y' amplification occurs by different pathways: in Tel1(+) tlc1h cells, it is Rad51-dependent, whereas in the absence of Tel1, it depends on Rad50. Generation of telomeric G-tail, which is cell cycle regulated, depends on the MRX (Mre11-Rad50-Xrs2) complex in tlc1h cells or is MRX-independent in tlc1h tel1Δ mutants. Unexpectedly, we observe telomere elongation in tlc1h lacking Rad51 that seems to act as a telomerase competitor for binding to telomeric G-tails. Overall, our results show that Tel1 and Rad51 have multiple roles in the maintenance of vertebrate-like telomeres in yeast, supporting the idea that they may participate to evolutionary conserved telomere protection mechanism/s acting at uncapped telomeres.
Sabouri, Nasim, et al.DNA replication through hard-to-replicate sites, including both highly transcribed RNA Pol II and Pol III genes, requires the S. pombe Pfh1 helicase.”. Genes Dev 26.6 (2012): , 26, 6, 581-93. Web.Abstract
Replication forks encounter impediments as they move through the genome, including natural barriers due to stable protein complexes and highly transcribed genes. Unlike lesions generated by exogenous damage, natural barriers are encountered in every S phase. Like humans, Schizosaccharomyces pombe encodes a single Pif1 family DNA helicase, Pfh1. Here, we show that Pfh1 is required for efficient fork movement in the ribosomal DNA, the mating type locus, tRNA, 5S ribosomal RNA genes, and genes that are highly transcribed by RNA polymerase II. In addition, converged replication forks accumulated at all of these sites in the absence of Pfh1. The effects of Pfh1 on DNA replication are likely direct, as it had high binding to sites whose replication was impaired in its absence. Replication in the absence of Pfh1 resulted in DNA damage specifically at those sites that bound high levels of Pfh1 in wild-type cells and whose replication was slowed in its absence. Cells depleted of Pfh1 were inviable if they also lacked the human TIMELESS homolog Swi1, a replisome component that stabilizes stalled forks. Thus, Pfh1 promotes DNA replication and separation of converged replication forks and suppresses DNA damage at hard-to-replicate sites.
Chisholm, Karen M, et al.A genomewide screen for suppressors of Alu-mediated rearrangements reveals a role for PIF1.”. PLoS One 72 (2012): , 7, 2, e30748. Web.Abstract
Alu-mediated rearrangement of tumor suppressor genes occurs frequently during carcinogenesis. In breast cancer, this mechanism contributes to loss of the wild-type BRCA1 allele in inherited disease and to loss of heterozygosity in sporadic cancer. To identify genes required for suppression of Alu-mediated recombination we performed a genomewide screen of a collection of 4672 yeast gene deletion mutants using a direct repeat recombination assay. The primary screen and subsequent analysis identified 12 candidate genes including TSA, ELG1, and RRM3, which are known to play a significant role in maintaining genomic stability. Genetic analysis of the corresponding human homologs was performed in sporadic breast tumors and in inherited BRCA1-associated carcinomas. Sequencing of these genes in high risk breast cancer families revealed a potential role for the helicase PIF1 in cancer predisposition. PIF1 variant L319P was identified in three breast cancer families; importantly, this variant, which is predicted to be functionally damaging, was not identified in a large series of controls nor has it been reported in either dbSNP or the 1000 Genomes Project. In Schizosaccharomyces pombe, Pfh1 is required to maintain both mitochondrial and nuclear genomic integrity. Functional studies in yeast of human PIF1 L319P revealed that this variant cannot complement the essential functions of Pfh1 in either the nucleus or mitochondria. Our results provide a global view of nonessential genes involved in suppressing Alu-mediated recombination and implicate variation in PIF1 in breast cancer predisposition.
Webb, Christopher J, and Virginia A Zakian. “Schizosaccharomyces pombe Ccq1 and TER1 bind the 14-3-3-like domain of Est1, which promotes and stabilizes telomerase-telomere association.”. Genes Dev 26.1 (2012): , 26, 1, 82-91. Web.Abstract
The telomerase protein Est1 exists in multiple organisms, including Schizosaccharomyces pombe, humans, and Saccharomyces cerevisiae, but its function has only been closely examined in S. cerevisiae, where it is a recruiter/activator of telomerase. Here, we demonstrate that S. pombe Est1 was required for the telomere association of the telomerase holoenzyme, suggesting that it too has a recruitment role. Its association with telomeres was dependent on Trt1, the catalytic subunit, and Ccq1, a telomeric protein. Surprisingly, Est1 telomere binding was only partially dependent on TER1, the telomerase RNA, even though Est1 bound nucleotides 415-507 of TER1. A ter1-Δ415-507 strain had short telomeres and very low Est1 and Trt1 telomere association in late S phase but did not senesce. An unbiased search for mutations that reduced Est1-TER1 interaction identified mutations only in the Est1 14-3-3-like domain, a phosphoserine-binding motif, the first example of a 14-3-3-like domain with RNA-binding activity. These mutations also reduced Est1-Ccq1 binding. One such mutant prevented Est1 telomere association and caused telomere loss and slow senescence, similar to ccq1Δ. We propose that the Est1-Ccq1 interaction is critical for telomerase recruitment, while the Est1-TER1 interaction acts downstream from Ccq1-mediated recruitment to stabilize the holoenzyme at the telomere.
Zakian, Virginia A. “Telomeres: the beginnings and ends of eukaryotic chromosomes.”. Exp Cell Res 318.12 (2012): , 318, 12, 1456-60. Web.Abstract
The ends of eukaryotic chromosomes are called telomeres. This article provides a short history of telomere and telomerase research starting with the pioneering work of Muller and McClintock through the molecular era of telomere biology. These studies culminated in the 2009 Nobel Prize in Medicine. Critical findings that moved the field forward and that suggest directions for future research are emphasized.
Bochman, Matthew L, Katrin Paeschke, and Virginia A Zakian. “DNA secondary structures: stability and function of G-quadruplex structures.”. Nat Rev Genet 13.11 (2012): , 13, 11, 770-80. Web.Abstract
In addition to the canonical double helix, DNA can fold into various other inter- and intramolecular secondary structures. Although many such structures were long thought to be in vitro artefacts, bioinformatics demonstrates that DNA sequences capable of forming these structures are conserved throughout evolution, suggesting the existence of non-B-form DNA in vivo. In addition, genes whose products promote formation or resolution of these structures are found in diverse organisms, and a growing body of work suggests that the resolution of DNA secondary structures is critical for genome integrity. This Review focuses on emerging evidence relating to the characteristics of G-quadruplex structures and the possible influence of such structures on genomic stability and cellular processes, such as transcription.
Wellinger, Raymund J, and Virginia A Zakian. “Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: beginning to end.”. Genetics 191.4 (2012): , 191, 4, 1073-105. Web.Abstract
The mechanisms that maintain the stability of chromosome ends have broad impact on genome integrity in all eukaryotes. Budding yeast is a premier organism for telomere studies. Many fundamental concepts of telomere and telomerase function were first established in yeast and then extended to other organisms. We present a comprehensive review of yeast telomere biology that covers capping, replication, recombination, and transcription. We think of it as yeast telomeres--soup to nuts.
Paeschke, Katrin, John A Capra, and Virginia A Zakian. “DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase.”. Cell 145.5 (2011): , 145, 5, 678-91. Web.Abstract
G-quadruplex (G4) DNA structures are extremely stable four-stranded secondary structures held together by noncanonical G-G base pairs. Genome-wide chromatin immunoprecipitation was used to determine the in vivo binding sites of the multifunctional Saccharomyces cerevisiae Pif1 DNA helicase, a potent unwinder of G4 structures in vitro. G4 motifs were a significant subset of the high-confidence Pif1-binding sites. Replication slowed in the vicinity of these motifs, and they were prone to breakage in Pif1-deficient cells, whereas non-G4 Pif1-binding sites did not show this behavior. Introducing many copies of G4 motifs caused slow growth in replication-stressed Pif1-deficient cells, which was relieved by spontaneous mutations that eliminated their ability to form G4 structures, bind Pif1, slow DNA replication, and stimulate DNA breakage. These data suggest that G4 structures form in vivo and that they are resolved by Pif1 to prevent replication fork stalling and DNA breakage.
Bochman, Matthew L, Colleen P Judge, and Virginia A Zakian. “The Pif1 family in prokaryotes: what are our helicases doing in your bacteria?”. Mol Biol Cell 22.12 (2011): , 22, 12, 1955-9. Web.Abstract
Pif1 family helicases, which are found in nearly all eukaryotes, have important roles in both nuclear and mitochondrial genome maintenance. Recently, the increasing availability of genome sequences has revealed that Pif1 helicases are also widely found in diverse prokaryotes, but it is currently unknown what physiological function(s) prokaryotic Pif1 helicases might perform. This Perspective aims to briefly introduce the reader to the well-studied eukaryotic Pif1 family helicases and speculate on what roles such enzymes may play in bacteria. On the basis of our hypotheses, we predict that Pif1 family helicases are important for resolving common issues that arise during DNA replication, recombination, and repair rather than functioning in a eukaryotic-specific manner.
Tuzon, Creighton T, et al.The Saccharomyces cerevisiae telomerase subunit Est3 binds telomeres in a cell cycle- and Est1-dependent manner and interacts directly with Est1 in vitro.”. PLoS Genet 75 (2011): , 7, 5, e1002060. Web.Abstract
Telomerase is a telomere dedicated reverse transcriptase that replicates the very ends of eukaryotic chromosomes. Saccharomyces cerevisiae telomerase consists of TLC1 (the RNA template), Est2 (the catalytic subunit), and two accessory proteins, Est1 and Est3, that are essential in vivo for telomerase activity but are dispensable for catalysis in vitro. Est1 functions in both recruitment and activation of telomerase. The association of Est3 with telomeres occurred largely in late S/G2 phase, the time when telomerase acts and Est1 telomere binding occurs. Est3 telomere binding was Est1-dependent. This dependence is likely due to a direct interaction between the two proteins, as purified recombinant Est1 and Est3 interacted in vitro. Est3 abundance was neither cell cycle-regulated nor Est1-dependent. Est3 was the most abundant of the three Est proteins (84.3±13.3 molecules per cell versus 71.1±19.2 for Est1 and 37.2±6.5 for Est2), so its telomere association and/or activity is unlikely to be limited by its relative abundance. Est2 and Est1 telomere binding was unaffected by the absence of Est3. Taken together, these data indicate that Est3 acts downstream of both Est2 and Est1 and that the putative activation function of Est1 can be explained by its role in recruiting Est3 to telomeres.
Wu, Yun, and Virginia A Zakian. “The telomeric Cdc13 protein interacts directly with the telomerase subunit Est1 to bring it to telomeric DNA ends in vitro.”. Proc Natl Acad Sci U S A 108.51 (2011): , 108, 51, 20362-9. Web.Abstract
In Saccharomyces cerevisiae, a Cdc13-Est1 interaction is proposed to mediate recruitment of telomerase to DNA ends. Here we provide unique in vitro evidence for this model by demonstrating a direct interaction between purified Cdc13 and Est1. The Cdc13-Est1 interaction is specific and requires the in vivo defined Cdc13 recruitment domain. Moreover, in the absence of this interaction, Est1 is excluded from telomeric single-stranded (ss)DNA. The apparent association constand (K(d)) between Est1 and a Cdc13-telomeric ssDNA complex was ∼250 nM. In G2 phase cells, where telomerase is active, Cdc13 and Est1 were sufficiently abundant (∼420 and ∼110 copies per cell, respectively) to support complex formation. Interaction between Cdc13 and Est1 was unchanged by three telomerase-deficient mutations, Cdc13(E252K) (cdc13-2), Est1(K444E) (est1-60), and Cdc13(S249,255D), indicating that their telomerase null phenotypes are not due to loss of the Cdc13-Est1 interaction. These data recapitulate in vitro the first step in telomerase recruitment to telomeric ssDNA and suggest that this step is necessary to recruit telomerase to DNA ends.
Boulé, Jean-Baptiste, and Virginia A Zakian. “Characterization of the helicase activity and anti-telomerase properties of yeast Pif1p in vitro.”. Methods Mol Biol 587 (2010): , 587, 359-76. Web.Abstract
Pif1p is the prototype member of a family of helicases that is highly conserved from yeast to humans. In yeast, Pif1p is involved in many aspects of the preservation of genome stability. In particular, Pif1p is involved in the maintenance of mitochondrial DNA and in the direct inhibition of telomerase at telomeres and double-stranded breaks. Here we describe methods to purify Pif1p and study in vitro its enzymatic properties and functional interaction with telomerase.
Capra, John A, et al.G-quadruplex DNA sequences are evolutionarily conserved and associated with distinct genomic features in Saccharomyces cerevisiae.”. PLoS Comput Biol 67 (2010): , 6, 7, e1000861. Web.Abstract
G-quadruplex DNA is a four-stranded DNA structure formed by non-Watson-Crick base pairing between stacked sets of four guanines. Many possible functions have been proposed for this structure, but its in vivo role in the cell is still largely unresolved. We carried out a genome-wide survey of the evolutionary conservation of regions with the potential to form G-quadruplex DNA structures (G4 DNA motifs) across seven yeast species. We found that G4 DNA motifs were significantly more conserved than expected by chance, and the nucleotide-level conservation patterns suggested that the motif conservation was the result of the formation of G4 DNA structures. We characterized the association of conserved and non-conserved G4 DNA motifs in Saccharomyces cerevisiae with more than 40 known genome features and gene classes. Our comprehensive, integrated evolutionary and functional analysis confirmed the previously observed associations of G4 DNA motifs with promoter regions and the rDNA, and it identified several previously unrecognized associations of G4 DNA motifs with genomic features, such as mitotic and meiotic double-strand break sites (DSBs). Conserved G4 DNA motifs maintained strong associations with promoters and the rDNA, but not with DSBs. We also performed the first analysis of G4 DNA motifs in the mitochondria, and surprisingly found a tenfold higher concentration of the motifs in the AT-rich yeast mitochondrial DNA than in nuclear DNA. The evolutionary conservation of the G4 DNA motif and its association with specific genome features supports the hypothesis that G4 DNA has in vivo functions that are under evolutionary constraint.
Wu, Yun, and Virginia A Zakian. “Identity crisis when telomeres left unprotected.”. J Mol Cell Biol 21 (2010): , 2, 1, 14-6. Web.Abstract
Loss of shelterin components TRF2 or POT1a-TPP1 complex from the chromosome end triggers DNA damage response (DDR) and aberrant DNA repair events. In a recent Nature paper, Chang and colleagues reported that the DNA repair protein Mre11 contributes to multiple events at the uncapped telomere, including ataxia telangiectasia-mutated (ATM)-dependent signaling, processing of the telomeric G-tail and homologous recombination (HR).
Paeschke, Katrin, Karin R McDonald, and Virginia A Zakian. “Telomeres: structures in need of unwinding.”. FEBS Lett 584.17 (2010): , 584, 17, 3760-72. Web.Abstract
Telomeres protect the ends of eukaryotic chromosomes from being recognized and processed as double strand breaks. In most organisms, telomeric DNA is highly repetitive with a high GC-content. Moreover, the G residues are concentrated in the strand running 3'-5' from the end of the chromosome towards its center. This G-rich strand is extended to form a 3' single-stranded tail that can form unusual secondary structures such as T-loops and G-quadruplex DNA. Both the duplex repeats and the single-stranded G-tail are assembled into stable protein-DNA complexes. The unique architecture, high GC content, and multi-protein association create particularly stable protein-DNA complexes that are a challenge for replication, recombination, and transcription. Helicases utilize the energy of nucleotide hydrolysis to unwind base paired nucleic acids and, in some cases, to displace proteins from them. The telomeric functions of helicases from the RecQ, Pifl, FANCJ, and DNA2 families are reviewed in this article. We summarize data showing that perturbation of their telomere activities can lead to telomere dysfunction and genome instability and in some cases human disease.
Bochman, Matthew L, Nasim Sabouri, and Virginia A Zakian. “Unwinding the functions of the Pif1 family helicases.”. DNA Repair (Amst) 93 (2010): , 9, 3, 237-49. Web.Abstract
Helicases are ubiquitous enzymes found in all organisms that are necessary for all (or virtually all) aspects of nucleic acid metabolism. The Pif1 helicase family is a group of 5'-->3' directed, ATP-dependent, super family IB helicases found in nearly all eukaryotes. Here, we review the discovery, evolution, and what is currently known about these enzymes in Saccharomyces cerevisiae (ScPif1 and ScRrm3), Schizosaccharomyces pombe (SpPfh1), Trypanosoma brucei (TbPIF1, 2, 5, and 8), mice (mPif1), and humans (hPif1). Pif1 helicases variously affect telomeric, ribosomal, and mitochondrial DNA replication, as well as Okazaki fragment maturation, and in at least some cases affect these processes by using their helicase activity to disrupt stable nucleoprotein complexes. While the functions of these enzymes vary within and between organisms, it is evident that Pif1 family helicases are crucial for both nuclear and mitochondrial genome maintenance.
McGee, Jean S, et al.Reduced Rif2 and lack of Mec1 target short telomeres for elongation rather than double-strand break repair.”. Nat Struct Mol Biol 17.12 (2010): , 17, 12, 1438-45. Web.Abstract
Telomerase in Saccharomyces cerevisiae binds and preferentially elongates short telomeres, and this process requires the checkpoint kinase Tel1. Here we show that the Mre11 complex bound preferentially to short telomeres, which could explain the preferential binding of Tel1 to these ends. Compared to wild-type length telomeres, short telomeres generated by incomplete replication had low levels of the telomerase inhibitory protein Rif2. Moreover, in the absence of Rif2, Tel1 bound equally well to short and wild-type length telomeres, suggesting that low Rif2 content marks short telomeres for preferential elongation. In congenic strains, a double-strand break bound at least 140 times as much Mec1 in the first cell cycle after breakage as did a short telomere in the same time frame. Binding of replication protein A was also much lower at short telomeres. The absence of Mec1 at short telomeres could explain why they do not trigger a checkpoint-mediated cell-cycle arrest.
Fachinetti, Daniele, et al.Replication termination at eukaryotic chromosomes is mediated by Top2 and occurs at genomic loci containing pausing elements.”. Mol Cell 39.4 (2010): , 39, 4, 595-605. Web.Abstract
Chromosome replication initiates at multiple replicons and terminates when forks converge. In E. coli, the Tus-TER complex mediates polar fork converging at the terminator region, and aberrant termination events challenge chromosome integrity and segregation. Since in eukaryotes, termination is less characterized, we used budding yeast to identify the factors assisting fork fusion at replicating chromosomes. Using genomic and mechanistic studies, we have identified and characterized 71 chromosomal termination regions (TERs). TERs contain fork pausing elements that influence fork progression and merging. The Rrm3 DNA helicase assists fork progression across TERs, counteracting the accumulation of X-shaped structures. The Top2 DNA topoisomerase associates at TERs in S phase, and G2/M facilitates fork fusion and prevents DNA breaks and genome rearrangements at TERs. We propose that in eukaryotes, replication fork barriers, Rrm3, and Top2 coordinate replication fork progression and fusion at TERs, thus counteracting abnormal genomic transitions.
Zakian, Virginia A. “The ends have arrived.”. Cell 139.6 (2009): , 139, 6, 1038-40. Web.Abstract
The 2009 Nobel Prize in Physiology or Medicine has been awarded to Elizabeth Blackburn, Carol Greider, and Jack Szostak for their contributions to our understanding of how the ends of eukaryotic chromosomes, telomeres, are replicated by a specialized reverse transcriptase, telomerase. I present a personal view of the telomere field, putting the contributions of these three Nobel laureates into historical context.
Azvolinsky, Anna, et al.Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae.”. Mol Cell 34.6 (2009): , 34, 6, 722-34. Web.Abstract
Replication forks face multiple obstacles that slow their progression. By two-dimensional gel analysis, yeast forks pause at stable DNA protein complexes, and this pausing is greatly increased in the absence of the Rrm3 helicase. We used a genome-wide approach to identify 96 sites of very high DNA polymerase binding in wild-type cells. Most of these binding sites were not previously identified pause sites. Rather, the most highly represented genomic category among high DNA polymerase binding sites was the open reading frames (ORFs) of highly transcribed RNA polymerase II genes. Twice as many pause sites were identified in rrm3 compared with wild-type cells, as pausing in this strain occurred at both highly transcribed RNA polymerase II genes and the previously identified protein DNA complexes. ORFs of highly transcribed RNA polymerase II genes are a class of natural pause sites that are not exacerbated in rrm3 cells.
Ribeyre, Cyril, et al.The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo.”. PLoS Genet 55 (2009): , 5, 5, e1000475. Web.Abstract
In budding yeast, the Pif1 DNA helicase is involved in the maintenance of both nuclear and mitochondrial genomes, but its role in these processes is still poorly understood. Here, we provide evidence for a new Pif1 function by demonstrating that its absence promotes genetic instability of alleles of the G-rich human minisatellite CEB1 inserted in the Saccharomyces cerevisiae genome, but not of other tandem repeats. Inactivation of other DNA helicases, including Sgs1, had no effect on CEB1 stability. In vitro, we show that CEB1 repeats formed stable G-quadruplex (G4) secondary structures and the Pif1 protein unwinds these structures more efficiently than regular B-DNA. Finally, synthetic CEB1 arrays in which we mutated the potential G4-forming sequences were no longer destabilized in pif1Delta cells. Hence, we conclude that CEB1 instability in pif1Delta cells depends on the potential to form G-quadruplex structures, suggesting that Pif1 could play a role in the metabolism of G4-forming sequences.
Sabourin, Michelle, and Virginia A Zakian. “ATM-like kinases and regulation of telomerase: lessons from yeast and mammals.”. Trends Cell Biol 18.7 (2008): , 18, 7, 337-46. Web.Abstract
Telomeres, the essential structures at the ends of eukaryotic chromosomes, are composed of G-rich DNA and asociated proteins. These structures are crucial for the integrity of the genome, because they protect chromosome ends from degradation and distinguish natural ends from chromosomal breaks. The complete replication of telomeres requires a telomere-dedicated reverse transcriptase called telomerase. Paradoxically, proteins that promote the very activities against which telomeres protect, namely DNA repair, recombination and checkpoint activation, are integral to both telomeric chromatin and telomere elongation. This review focuses on recent findings that shed light on the roles of ATM-like kinases and other checkpoint and repair proteins in telomere maintenance, replication and checkpoint signaling.
Webb, Christopher J, and Virginia A Zakian. “Identification and characterization of the Schizosaccharomyces pombe TER1 telomerase RNA.”. Nat Struct Mol Biol 15.1 (2008): , 15, 1, 34-42. Web.Abstract
Although the catalytic subunit of the Schizosaccharomyces pombe telomerase holoenzyme was identified over ten years ago, the unusual heterogeneity of its telomeric DNA made it difficult to identify its RNA component. We used a new two-step immunoprecipitation and reverse transcription-PCR technique to identify the S. pombe telomerase RNA, which we call TER1. TER1 RNA was 1,213 nucleotides long, similar in size to the Saccharomyces cerevisiae telomerase RNA, TLC1. TER1 RNA associated in vivo with the two known subunits of the S. pombe telomerase holoenzyme, Est1p and Trt1p, and neither association was dependent on the other holoenzyme component. We present a model to explain how telomerase introduces heterogeneity into S. pombe telomeres. The technique used here to identify TER1 should be generally applicable to other model organisms.
Pinter, Stefan F, Sarah D Aubert, and Virginia A Zakian. “The Schizosaccharomyces pombe Pfh1p DNA helicase is essential for the maintenance of nuclear and mitochondrial DNA.”. Mol Cell Biol 28.21 (2008): , 28, 21, 6594-608. Web.Abstract
Schizosaccharomyces pombe Pfh1p is an essential member of the Pif family of 5'-3' DNA helicases. The two Saccharomyces cerevisiae homologs, Pif1p and Rrm3p, function in nuclear DNA replication, telomere length regulation, and mitochondrial genome integrity. We demonstrate here the existence of multiple Pfh1p isoforms that localized to either nuclei or mitochondria. The catalytic activity of Pfh1p was essential in both cellular compartments. The absence of nuclear Pfh1p resulted in G(2) arrest and accumulation of DNA damage foci, a finding suggestive of an essential role in DNA replication. Exogenous DNA damage resulted in localization of Pfh1p to DNA damage foci, suggesting that nuclear Pfh1p also functions in DNA repair. The absence of mitochondrial Pfh1p caused rapid depletion of mitochondrial DNA. Despite localization to nuclei and mitochondria in S. pombe, neither of the S. cerevisiae homologs, nor human PIF1, suppressed the lethality of pfh1Delta cells. However, the essential nuclear function of Pfh1p could be supplied by Rrm3p. Expression of Rrm3p suppressed the accumulation of DNA damage foci but not the hydroxyurea sensitivity of cells depleted of nuclear Pfh1p. Together, these data demonstrate that Pfh1p has essential roles in the replication of both nuclear and mitochondrial DNA.
Chan, Angela, Jean-Baptiste Boulé, and Virginia A Zakian. “Two pathways recruit telomerase to Saccharomyces cerevisiae telomeres.”. PLoS Genet 410 (2008): , 4, 10, e1000236. Web.Abstract
The catalytic subunit of yeast telomerase, Est2p, is a telomere associated throughout most of the cell cycle, while the Est1p subunit binds only in late S/G2 phase, the time of telomerase action. Est2p binding in G1/early S phase requires a specific interaction between telomerase RNA (TLC1) and Ku80p. Here, we show that in four telomerase-deficient strains (cdc13-2, est1A, tlc1-SD, and tlc1-BD), Est2p telomere binding was normal in G1/early S phase but reduced to about 40-50% of wild type levels in late S/G2 phase. Est1p telomere association was low in all four strains. Wild type levels of Est2p telomere binding in late S/G2 phase was Est1p-dependent and required that Est1p be both telomere-bound and associated with a stem-bulge region in TLC1 RNA. In three telomerase-deficient strains in which Est1p is not Est2p-associated (tlc1-SD, tlc1-BD, and est2A), Est1p was present at normal levels but its telomere binding was very low. When the G1/early S phase and the late S/G2 phase telomerase recruitment pathways were both disrupted, neither Est2p nor Est1p was telomere-associated. We conclude that reduced levels of Est2p and low Est1p telomere binding in late S/G2 phase correlated with an est phenotype, while a WT level of Est2p binding in G1 was not sufficient to maintain telomeres. In addition, even though Cdc13p and Est1p interact by two hybrid, biochemical and genetic criteria, this interaction did not occur unless Est1p was Est2p-associated, suggesting that Est1p comes to the telomere only as part of the holoenzyme. Finally, the G1 and late S/G2 phase pathways for telomerase recruitment are distinct and are likely the only ones that bring telomerase to telomeres in wild-type cells.
Mondoux, Michelle A, Jillian G Scaife, and Virginia A Zakian. “Differential nuclear localization does not determine the silencing status of Saccharomyces cerevisiae telomeres.”. Genetics 177.4 (2007): , 177, 4, 2019-29. Web.Abstract
In Saccharomyces cerevisiae, genes near telomeres are transcriptionally repressed, a phenomenon termed telomere position effect (TPE). Yeast telomeres cluster near the nuclear periphery, as do foci of proteins essential for TPE: Rap1p, Sir2-4p, and yKu70p/yKu80p. However, it is not clear if localization of telomeres to the periphery actually contributes to TPE. We examined the localization patterns of two telomeres with different levels of TPE: truncated VII-L and native VI-R. For both telomeres, localization to the nuclear periphery or to the silencing foci was neither necessary nor sufficient for TPE. Moreover, there was no correlation between TPE levels and the extent of localization. Tethering the truncated VII-L telomere to the nuclear periphery resulted in a modest increase in TPE. However, tethering did not bypass the roles of yKu70p, Sir4p, or Esc1p in TPE. Using mutations in RIF genes that bypass the role of Ku in TPE, a correlation between the level of silencing and the number of Rap1p foci present in the nucleus was observed, suggesting that Sir protein levels at telomeres determine both the level of TPE and the number of foci.
Sabourin, Michelle, et al.A flexible protein linker improves the function of epitope-tagged proteins in Saccharomyces cerevisiae.”. Yeast 24.1 (2007): , 24, 1, 39-45. Web.Abstract
Epitope tagging permits the detection of proteins when protein-specific antibodies are not available. However, the epitope tag can reduce the function of the tagged protein. Here we describe a cassette that can be used to introduce an eight amino acid flexible linker between multiple Myc epitopes and the open reading frame of a given gene. We show that inserting the linker improves the in vivo ability of the telomerase subunits Est2p and Est1p to maintain telomere length. The methods used here are generally applicable to improve the function of tagged proteins in both Saccharomyces cerevisiae and Schizosaccharomyces pombe.
Vega, Leticia R, et al.Sensitivity of yeast strains with long G-tails to levels of telomere-bound telomerase.”. PLoS Genet 36 (2007): , 3, 6, e105. Web.Abstract
The Saccharomyces cerevisiae Pif1p helicase is a negative regulator of telomere length that acts by removing telomerase from chromosome ends. The catalytic subunit of yeast telomerase, Est2p, is telomere associated throughout most of the cell cycle, with peaks of association in both G1 phase (when telomerase is not active) and late S/G2 phase (when telomerase is active). The G1 association of Est2p requires a specific interaction between Ku and telomerase RNA. In mutants lacking this interaction, telomeres were longer in the absence of Pif1p than in the presence of wild-type PIF1, indicating that endogenous Pif1p inhibits the active S/G2 form of telomerase. Pif1p abundance was cell cycle regulated, low in G1 and early S phase and peaking late in the cell cycle. Low Pif1p abundance in G1 phase was anaphase-promoting complex dependent. Thus, endogenous Pif1p is unlikely to act on G1 bound Est2p. Overexpression of Pif1p from a non-cell cycle-regulated promoter dramatically reduced viability in five strains with impaired end protection (cdc13-1, yku80Delta, yku70Delta, yku80-1, and yku80-4), all of which have longer single-strand G-tails than wild-type cells. This reduced viability was suppressed by deleting the EXO1 gene, which encodes a nuclease that acts at compromised telomeres, suggesting that the removal of telomerase by Pif1p exposed telomeres to further C-strand degradation. Consistent with this interpretation, depletion of Pif1p, which increases the amount of telomere-bound telomerase, suppressed the temperature sensitivity of yku70Delta and cdc13-1 cells. Furthermore, eliminating the pathway that recruits Est2p to telomeres in G1 phase in a cdc13-1 strain also reduced viability. These data suggest that wild-type levels of telomere-bound telomerase are critical for the viability of strains whose telomeres are already susceptible to degradation.
Mondoux, Michelle A, and Virginia A Zakian. “Subtelomeric elements influence but do not determine silencing levels at Saccharomyces cerevisiae telomeres.”. Genetics 177.4 (2007): , 177, 4, 2541-6. Web.Abstract
In Saccharomyces cerevisiae, genes placed near telomeres are transcriptionally repressed (telomere position effect, TPE). Although telomeric DNA sequence is the same at all chromosome ends, the subtelomeric elements (STEs) and level of TPE vary from telomere to telomere. We tested whether STEs determine TPE levels. STEs contributed to TPE, as deleting the X element from the VI-R telomere modestly decreased silencing at this telomere. However, STEs were not the major determinant of TPE levels, as inserting the VI-R X element at the truncated VII-L telomere did not increase TPE. These data suggest that the TPE levels of individual telomeres are dependent on some aspect of chromosome context.
Sabourin, Michelle, Creighton T Tuzon, and Virginia A Zakian. “Telomerase and Tel1p preferentially associate with short telomeres in S. cerevisiae.”. Mol Cell 27.4 (2007): , 27, 4, 550-61. Web.Abstract
In diverse organisms, telomerase preferentially elongates short telomeres. We generated a single short telomere in otherwise wild-type (WT) S. cerevisiae cells. The binding of the positive regulators Ku and Cdc13p was similar at short and WT-length telomeres. The negative regulators Rif1p and Rif2p were present at the short telomere, although Rif2p levels were reduced. Two telomerase holoenzyme components, Est1p and Est2p, were preferentially enriched at short telomeres in late S/G2 phase, the time of telomerase action. Tel1p, the yeast ATM-like checkpoint kinase, was highly enriched at short telomeres from early S through G2 phase and even into the next cell cycle. Nonetheless, induction of a single short telomere did not elicit a cell-cycle arrest. Tel1p binding was dependent on Xrs2p and required for preferential binding of telomerase to short telomeres. These data suggest that Tel1p targets telomerase to the DNA ends most in need of extension.
Boulé, Jean-Baptiste, and Virginia A Zakian. “The yeast Pif1p DNA helicase preferentially unwinds RNA DNA substrates.”. Nucleic Acids Res 35.17 (2007): , 35, 17, 5809-18. Web.Abstract
Pif1p is the prototypical member of the PIF1 family of DNA helicases, a subfamily of SFI helicases conserved from yeast to humans. Baker's yeast Pif1p is involved in the maintenance of mitochondrial, ribosomal and telomeric DNA and may also have a general role in chromosomal replication by affecting Okazaki fragment maturation. Here we investigate the substrate preferences for Pif1p. The enzyme was preferentially active on RNA-DNA hybrids, as seen by faster unwinding rates on RNA-DNA hybrids compared to DNA-DNA hybrids. When using forked substrates, which have been shown previously to stimulate the enzyme, Pif1p demonstrated a preference for RNA-DNA hybrids. This preferential unwinding could not be correlated to preferential binding of Pif1p to the substrates that were the most readily unwound. Although the addition of the single-strand DNA-binding protein replication protein A (RPA) stimulated the helicase reaction on all substrates, it did not diminish the preference of Pif1p for RNA-DNA substrates. Thus, forked RNA-DNA substrates are the favored substrates for Pif1p in vitro. We discuss these findings in terms of the known biological roles of the enzyme.
Boulé, Jean-Baptiste, and Virginia A Zakian. “Roles of Pif1-like helicases in the maintenance of genomic stability.”. Nucleic Acids Res 34.15 (2006): , 34, 15, 4147-53. Web.Abstract
The Pif1p family of DNA helicases is conserved from yeast to humans. To date, four members of this family have been analyzed in some detail by in vitro and in vivo assays: the two baker's yeast helicases, ScPif1p and Rrm3p, the fission yeast Pfh1p and the human enzyme hPif1p. In vitro, these enzymes are 5' to 3' DNA helicase and show little processivity. In vivo, ScPif1p, Rrm3p and probably Pfh1p, function in both the nucleus at specific genomic loci and in mitochondria, where they are needed for the stable maintenance of the genome as accessory helicases to the replication machinery. Interestingly, they act on common DNA substrates but appear to have largely non-overlapping cellular functions, ranging from Okazaki fragment processing, telomerase inhibition, to helping the replication fork progress through non-nucleosomal protein-DNA complexes. For example, both ScPif1p and Rrm3p affect the replication of telomeres, but in a different way: Pif1p inhibits telomerase-mediated telomere elongation by directly removing telomerase from a DNA end, whereas Rrm3p facilitates replication through telomeric DNA. Here we review the current knowledge on the Pif1-like helicases, as a first step towards understanding the basis of their functional specialization and mechanism of action.
Azvolinsky, Anna, et al.The S. cerevisiae Rrm3p DNA helicase moves with the replication fork and affects replication of all yeast chromosomes.”. Genes Dev 20.22 (2006): , 20, 22, 3104-16. Web.Abstract
The Saccharomyces cerevisiae DNA helicase Rrm3p is needed for normal fork progression through >1000 discrete sites scattered throughout the genome. Here we show that replication of all yeast chromosomes was markedly delayed in rrm3 cells. Delayed replication was seen even in a region that lacks any predicted Rrm3p-dependent sites. Based on the pattern of replication intermediates in two-dimensional gels, the rate of fork movement in rrm3 cells appeared similar to wild-type except at known Rrm3p-dependent sites. These data suggest that although Rrm3p has a global role in DNA replication, its activity is needed only or primarily at specific, difficult-to-replicate sites. By the criterion of chromatin immunoprecipitation, Rrm3p was associated with both Rrm3p-dependent and -independent sites, and moved with the replication fork through both. In addition, Rrm3p interacted with Pol2p, the catalytic subunit of DNA polymerase epsilon, in vivo. Thus, rather than being recruited to its sites of action when replication forks stall at these sites, Rrm3p is likely a component of the replication fork apparatus.
Mateyak, Maria K, and Virginia A Zakian. “Human PIF helicase is cell cycle regulated and associates with telomerase.”. Cell Cycle 523 (2006): , 5, 23, 2796-804. Web.Abstract
The evolutionarily conserved PIF1 DNA helicase family is important for the maintenance of genome stability in the yeast, Saccharomyces cerevisiae. There are two PIF1 family helicases in S. cerevisiae, Pif1p and Rrm3p that both possess 5'-->3' DNA helicase activity but maintain unique functions in telomerase regulation and semi-conservative DNA replication. Database analysis shows that the PIF1 helicase family is represented by a single homologue in higher eukaryotes. To analyze the function of PIF1 homologues in mammals, we cloned the full length human PIF (hPIF) cDNA. Comparison of hPIF with its S. cerevisiae homologues showed that human PIF is equally similar to Pif1p and Rrm3p. Human PIF was expressed at low levels in a variety of tissues and immunofluorescence analysis showed that ectopic hPIF was localized to nuclear foci. hPIF was expressed in late S/G2 phase of the cell cycle and this cell cycle regulated abundance was conferred by both cell cycle regulated mRNA accumulation and ubiquitin-mediated degradation. Furthermore, hPIF is likely a target of the anaphase promoting complex/cyclosome as its abundance was decreased when an activator of the APC/C was overexpressed. Finally, antibodies against hPIF immunoprecipitated telomerase activity from human cell lines, and we have observed a physical interaction between hPIF and the catalytic subunit of telomerase, hTERT. Our data suggest that human PIF, like S. cerevisiae Pif1p, plays a role in telomerase regulation.
Goudsouzian, Lara K, Creighton T Tuzon, and Virginia A Zakian. “S. cerevisiae Tel1p and Mre11p are required for normal levels of Est1p and Est2p telomere association.”. Mol Cell 24.4 (2006): , 24, 4, 603-10. Web.Abstract
In diverse organisms, the Mre11 complex and phosphoinositide 3-kinase-related kinases (PIKKs), such as Tel1p and Mec1p from S. cerevisiae, are key mediators of DNA repair and DNA damage checkpoints that also function at telomeres. Here, we use chromatin immunoprecipitation (ChIP) to determine if Mre11p, Tel1p, or Mec1p affects telomere maintenance by promoting recruitment of telomerase subunits to S. cerevisiae telomeres. We find that recruitment of Est2p, the catalytic subunit of telomerase, and Est1p, a telomerase accessory protein, was severely reduced in mre11Delta and tel1Delta cells. In contrast, the levels of Est2p and Est1p binding in late S/G2 phase, the period in the cell cycle when yeast telomerase lengthens telomeres, were indistinguishable in wild-type (WT) and mec1Delta cells. These data argue that Mre11p and Tel1p affect telomere length by promoting telomerase recruitment to telomeres, whereas Mec1p has only a minor role in telomerase recruitment in a TEL1 cell.
Muller, Carol B, et al.Gender differences and performance in science.”. Science 307.5712 (2005): , 307, 5712, 1043. Web.
Fisher, Timothy S, and Virginia A Zakian. “Ku: a multifunctional protein involved in telomere maintenance.”. DNA Repair (Amst) 411 (2005): , 4, 11, 1215-26. Web.Abstract
The DNA-binding protein Ku plays a critical role in a variety of cellular processes, including the repair of double-stranded DNA breaks and V(D)J recombination. Paradoxically, while Ku is required for double-stranded break repair by non-homologous end-joining, in many organisms, Ku is also associated with telomeres. Although telomeres are naturally occurring double-stranded DNA breaks, one of their first identified functions is to protect chromosomes from end-to-end fusions, a process that is promoted by non-homologous end-joining. While located at telomeres, Ku appears to play several important roles, including: (1) regulating telomere addition, (2) protecting telomeres from recombination and nucleolytic degradation, (3) promoting transcriptional silencing of telomere-proximal genes and (4) nuclear positioning of telomeres. Here, we review the role of Ku at telomeres in the model organism, Saccharomyces cerevisiae and compare and contrast it to the roles of Ku at telomeres in other organisms.
Boulé, Jean-Baptiste, Leticia R Vega, and Virginia A Zakian. “The yeast Pif1p helicase removes telomerase from telomeric DNA.”. Nature 438.7064 (2005): , 438, 7064, 57-61. Web.Abstract
Telomeres are the physical ends of eukaryotic chromosomes. Genetic studies have established that the baker's yeast Pif1p DNA helicase is a negative regulator of telomerase, the specialized reverse transcriptase that maintains telomeric DNA, but the biochemical basis for this inhibition was unknown. Here we show that in vitro, Pif1p reduces the processivity of telomerase and releases telomerase from telomeric oligonucleotides. The released telomerase is enzymatically active because it is able to lengthen a challenger oligonucleotide. In vivo, overexpression of Pif1p reduces telomerase association with telomeres, whereas depleting cells of Pif1p increases the levels of telomere-bound Est1p, a telomerase subunit that is present on the telomere when telomerase is active. We propose that Pif1p helicase activity limits telomerase action both in vivo and in vitro by displacing active telomerase from DNA ends.
Bessler, Jessica B, and Virginia A Zakian. “The amino terminus of the Saccharomyces cerevisiae DNA helicase Rrm3p modulates protein function altering replication and checkpoint activity.”. Genetics 168.3 (2004): , 168, 3, 1205-18. Web.Abstract
The Pif1 family of DNA helicases is conserved from yeast to humans. Although the helicase domains of family members are well conserved, the amino termini of these proteins are not. The Saccharomyces cerevisiae genome encodes two Pif1 family members, Rrm3p and Pif1p, that have very different functions. To determine if the amino terminus of Rrm3p contributes to its role in promoting fork progression at >1000 discrete chromosomal sites, we constructed a deletion series that lacked portions of the 249-amino-acid amino terminus. The phenotypes of cells expressing alleles that lacked all or most of the amino terminus were indistinguishable from those of rrm3Delta cells. Rrm3p deletion derivatives that lacked smaller portions of the amino terminus were also defective, but the extent of replication pausing at tRNA genes, telomeres, and ribosomal DNA (rDNA) was not as great as in rrm3Delta cells. Deleting only 62 amino acids from the middle of the amino terminus affected only rDNA replication, suggesting that the amino terminus can confer locus-specific effects. Cells expressing a fusion protein consisting of the Rrm3p amino terminus and the Pif1p helicase domain displayed defects similar to rrm3Delta cells. These data demonstrate that the amino terminus of Rrm3p is essential for Rrm3p function. However, the helicase domain of Rrm3p also contributes to its functional specificity.
Fisher, Timothy S, Andrew KP Taggart, and Virginia A Zakian. “Cell cycle-dependent regulation of yeast telomerase by Ku.”. Nat Struct Mol Biol 11.12 (2004): , 11, 12, 1198-205. Web.Abstract
The heterodimeric Ku complex affects telomere structure in diverse organisms. We report here that in the absence of Ku, the catalytic subunit of telomerase, Est2p, was not telomere-associated in G1 phase, and its association in late S phase was decreased. The telomere association of Est1p, a telomerase component that binds telomeres only in late S phase, was also reduced in the absence of Ku. The effects of Ku on telomerase binding require a 48-nucleotide (nt) stem-loop region of TLC1 telomerase RNA. Ku interacts with TLC1 RNA via this 48-nt region throughout the cell cycle, but this interaction was reduced after telomere replication. These data support a model in which Ku recruits telomerase to telomeres in G1 phase when telomerase is inactive and promotes telomerase-mediated telomere lengthening in late S phase.
Torres, Jorge Z, Jessica B Bessler, and Virginia A Zakian. “Local chromatin structure at the ribosomal DNA causes replication fork pausing and genome instability in the absence of the S. cerevisiae DNA helicase Rrm3p.”. Genes Dev 18.5 (2004): , 18, 5, 498-503. Web.Abstract
Lack of the yeast Rrm3p DNA helicase causes replication defects at multiple sites within ribosomal DNA (rDNA), including at the replication fork barrier (RFB). These defects were unaltered in rrm3 sir2 cells. When the RFB binding Fob1p was deleted, rrm3-generated defects at the RFB were eliminated, but defects at other rDNA sites were not affected. Thus, specific protein-DNA complexes make replication Rrm3p-dependent. Because rrm3-induced increases in recombination and cell cycle length were only partially suppressed in rrm3 fob1 cells, which still required checkpoint and fork restart activities for viability, non-RFB rrm3-induced defects contribute to rDNA fragility and genome instability.
Torres, Jorge Z, Sandra L Schnakenberg, and Virginia A Zakian. “Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities.”. Mol Cell Biol 24.8 (2004): , 24, 8, 3198-212. Print.Abstract
Rrm3p is a 5'-to-3' DNA helicase that helps replication forks traverse protein-DNA complexes. Its absence leads to increased fork stalling and breakage at over 1,000 specific sites located throughout the Saccharomyces cerevisiae genome. To understand the mechanisms that respond to and repair rrm3-dependent lesions, we carried out a candidate gene deletion analysis to identify genes whose mutation conferred slow growth or lethality on rrm3 cells. Based on synthetic phenotypes, the intra-S-phase checkpoint, the SRS2 inhibitor of recombination, the SGS1/TOP3 replication fork restart pathway, and the MRE11/RAD50/XRS2 (MRX) complex were critical for viability of rrm3 cells. DNA damage checkpoint and homologous recombination genes were important for normal growth of rrm3 cells. However, the MUS81/MMS4 replication fork restart pathway did not affect growth of rrm3 cells. These data suggest a model in which the stalled and broken forks generated in rrm3 cells activate a checkpoint response that provides time for fork repair and restart. Stalled forks are converted by a Rad51p-mediated process to intermediates that are resolved by Sgs1p/Top3p. The rrm3 system provides a unique opportunity to learn the fate of forks whose progress is impaired by natural impediments rather than by exogenous DNA damage.
Vega, Leticia R, Maria K Mateyak, and Virginia A Zakian. “Getting to the end: telomerase access in yeast and humans.”. Nat Rev Mol Cell Biol 412 (2003): , 4, 12, 948-59. Web.
Callahan, Julie L, et al.Mutations in yeast replication proteins that increase CAG/CTG expansions also increase repeat fragility.”. Mol Cell Biol 23.21 (2003): , 23, 21, 7849-60. Print.Abstract
Expansion of trinucleotide repeats (TNRs) is the causative mutation in several human genetic diseases. Expanded TNR tracts are both unstable (changing in length) and fragile (displaying an increased propensity to break). We have investigated the relationship between fidelity of lagging-strand replication and both stability and fragility of TNRs. We devised a new yeast artificial chromomosme (YAC)-based assay for chromosome breakage to analyze fragility of CAG/CTG tracts in mutants deficient for proteins involved in lagging-strand replication: Fen1/Rad27, an endo/exonuclease involved in Okazaki fragment maturation, the nuclease/helicase Dna2, RNase HI, DNA ligase, polymerase delta, and primase. We found that deletion of RAD27 caused a large increase in breakage of short and long CAG/CTG tracts, and defects in DNA ligase and primase increased breakage of long tracts. We also found a correlation between mutations that increase CAG/CTG tract breakage and those that increase repeat expansion. These results suggest that processes that generate strand breaks, such as faulty Okazaki fragment processing or DNA repair, are an important source of TNR expansions.
Alexander, Mary Kate, and Virginia A Zakian. “Rap1p telomere association is not required for mitotic stability of a C(3)TA(2) telomere in yeast.”. EMBO J 22.7 (2003): , 22, 7, 1688-96. Web.Abstract
Telomeric DNA usually consists of a repetitive sequence: C(1-3)A/TG(1-3) in yeast, and C(3)TA(2)/T(2)AG(3) in vertebrates. In yeast, the sequence-specific DNA- binding protein Rap1p is thought to be essential for telomere function. In a tlc1h mutant, the templating region of the telomerase RNA gene is altered so that telomerase adds the vertebrate telomere sequence instead of the yeast sequence to the chromosome end. A tlc1h strain has short but stable telomeres and no growth defect. We show here that Rap1p and the Rap1p-associated Rif2p did not bind to a telomere that contains purely vertebrate repeats, while the TG(1-3) single-stranded DNA binding protein Cdc13p and the normally non-telomeric protein Tbf1p did bind this telomere. A chromosome with one entirely vertebrate-sequence telomere had a wild-type loss rate, and the telomere was maintained at a short but stable length. However, this telomere was unable to silence a telomere-adjacent URA3 gene, and the strain carrying this telomere had a severe defect in meiosis. We conclude that Rap1p localization to a C(3)TA(2) telomere is not required for its essential mitotic functions.
Taggart, Andrew KP, and Virginia A Zakian. “Telomerase: what are the Est proteins doing?”. Curr Opin Cell Biol 15.3 (2003): , 15, 3, 275-80. Print.Abstract
Saccharomyces cerevisiae has proven to be a useful model organism for the study of telomerase, a specialized cellular reverse transcriptase that helps maintain genomic stability by adding telomeric DNA repeats to the ends of chromosomes. Yeast telomerase is thought to be a holoenzyme containing Est2p and TLC1 RNA, the catalytic subunit and its intrinsic template, respectively, as well as the TLC1-RNA-associated factors Est1p and Est3p. Cdc13p, a sequence-specific telomere-DNA-binding protein, is also required for action in vivo. A current model for telomerase regulation is that telomere-associated Cdc13p binds Est1p, thereby recruiting telomerase. However, recent chromatin immunoprecipitation experiments suggest an alternate role for Est1p in activating Est2p-TLC1-RNA that is already bound to the telomere. Three models for Est1p activation are presented.
Ivessa, Andreas S, et al.The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein-DNA complexes.”. Mol Cell 12.6 (2003): , 12, 6, 1525-36. Print.Abstract
The Saccharomyces cerevisiae RRM3 gene encodes a 5' to 3' DNA helicase. While replication of most of the yeast genome was not dependent upon Rrm3p, in its absence, replication forks paused and often broke at an estimated 1400 discrete sites, including tRNA genes, centromeres, inactive replication origins, and transcriptional silencers. These replication defects were associated with activation of the intra-S phase checkpoint. Activation of the checkpoint was critical for viability of rrm3Delta cells, especially at low temperatures. Each site whose replication was affected by Rrm3p is assembled into a nonnucleosomal protein-DNA complex. At tRNA genes and the silent mating type loci, disruption of these complexes eliminated dependence upon Rrm3p. These data indicate that the Rrm3p DNA helicase helps replication forks traverse protein-DNA complexes, naturally occurring impediments that are encountered in each S phase.
Taggart, Andrew KP, Shu-Chun Teng, and Virginia A Zakian. “Est1p as a cell cycle-regulated activator of telomere-bound telomerase.”. Science 297.5583 (2002): , 297, 5583, 1023-6. Web.Abstract
In Saccharomyces cerevisiae, the telomerase components Est2p, TLC1 RNA, Est1p, and Est3p are thought to form a complex that acts late during chromosome replication (S phase) upon recruitment by Cdc13p, a telomeric DNA binding protein. Consistent with this model, we show that Est1p, Est2p, and Cdc13p are telomere-associated at this time. However, Est2p, but not Est1p, also binds telomeres before late S phase. The cdc13-2 allele has been proposed to be defective in recruitment, yet Est1p and Est2p telomere association persists in cdc13-2 cells. These findings suggest a model in which Est1p binds telomeres late in S phase and interacts with Cdc13p to convert inactive, telomere-bound Est2p to an active form.
Ivessa, Andreas S, et al.Saccharomyces Rrm3p, a 5' to 3' DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA.”. Genes Dev 16.11 (2002): , 16, 11, 1383-96. Web.Abstract
In wild-type Saccharomyces cerevisiae, replication forks slowed during their passage through telomeric C(1-3)A/TG(1-3) tracts. This slowing was greatly exacerbated in the absence of RRM3, shown here to encode a 5' to 3' DNA helicase. Rrm3p-dependent fork progression was seen at a modified Chromosome VII-L telomere, at the natural X-bearing Chromosome III-L telomere, and at Y'-bearing telomeres. Loss of Rrm3p also resulted in replication fork pausing at specific sites in subtelomeric DNA, such as at inactive replication origins, and at internal tracts of C(1-3)A/TG(1-3) DNA. The ATPase/helicase activity of Rrm3p was required for its role in telomeric and subtelomeric DNA replication. Because Rrm3p was telomere-associated in vivo, it likely has a direct role in telomere replication.
Zhou, Jin-Qiu, et al.Schizosaccharomyces pombe pfh1+ encodes an essential 5' to 3' DNA helicase that is a member of the PIF1 subfamily of DNA helicases.”. Mol Biol Cell 13.6 (2002): , 13, 6, 2180-91. Print.Abstract
The Saccharomyces cerevisiae Pif1p DNA helicase is the prototype member of a helicase subfamily conserved from yeast to humans. S. cerevisiae has two PIF1-like genes, PIF1 itself and RRM3, that have roles in maintenance of telomeric, ribosomal, and mitochondrial DNA. Here we describe the isolation and characterization of pfh1+, a Schizosaccharomyces pombe gene that encodes a Pif1-like protein. Pfh1p was the only S. pombe protein with high identity to Saccharomyces Pif1p. Unlike the two S. cerevisiae Pif1 subfamily proteins, the S. pombe Pfh1p was essential. Like Saccharomyces Pif1p, a truncated form of the S. pombe protein had 5' to 3' DNA helicase activity. Point mutations in an invariant lysine residue in the ATP binding pocket of Pfh1p had the same phenotype as deleting pfh1+, demonstrating that the ATPase/helicase activity of Pfh1p was essential. Although mutant spores depleted for Pfh1p proceeded through S phase, they arrested with a terminal cellular phenotype consistent with a postinitiation defect in DNA replication. Telomeric DNA was modestly shortened in the absence of Pfh1p. However, genetic analysis demonstrated that maintenance of telomeric DNA was not the sole essential function of S. pombe Pfh1p.
Ivessa, Andreas S, and Virginia A Zakian. “To fire or not to fire: origin activation in Saccharomyces cerevisiae ribosomal DNA.”. Genes Dev 16.19 (2002): , 16, 19, 2459-64. Web.
Tham, Wai-Hong, and Virginia A Zakian. “Transcriptional silencing at Saccharomyces telomeres: implications for other organisms.”. Oncogene 21.4 (2002): , 21, 4, 512-21. Web.Abstract
Telomeres are the natural ends of eukaryotic chromosomes. In most organisms, telomeres consist of simple, repeated DNA with the strand running 5' to 3' towards the end of the chromosome being rich in G residues. In cases where the very end of the chromosome has been examined, the G-strand is extended to form a short, single stranded tail. The chromatin structure of telomeric regions often has features that distinguish them from other parts of the genome. Because telomeres protect chromosome ends from degradation and end-to-end fusions and prevent the loss of terminal DNA by serving as a substrate for telomerase, they are essential for the stable maintenance of eukaryotic chromosomes. In addition to their essential functions, telomeres in diverse organisms are specialized sites for gene expression. Transcription of genes located next to telomeres is repressed, a phenomenon termed telomere position effect (TPE). TPE is best characterized in the yeast Saccharomyces cerevisiae. This article will focus on the silencing properties of Saccharomyces telomeres and end with speculation on the role of TPE in yeasts and other organisms.
Tham, WH, et al.Localization of yeast telomeres to the nuclear periphery is separable from transcriptional repression and telomere stability functions.”. Mol Cell 81 (2001): , 8, 1, 189-99. Print.Abstract
The left telomere of Saccharomyces chromosome VII was often localized near the nuclear periphery, even in cells lacking the silencing proteins Sir3 or Hdf1. This association was lost in late mitotic cells and when transcription was induced through the telomeric tract. Although in silencing competent cells there was no correlation between the fraction of cells in which a telomeric gene was repressed and the fraction of cells in which it was localized to the periphery, no condition was found where the telomere was both silenced and away from the periphery. We conclude that localization of a telomere to the nuclear periphery is not sufficient for transcriptional repression nor does it affect the stability function of yeast telomeres.
Alexander, MK, BD Bourns, and VA Zakian. “One-hybrid systems for detecting protein-DNA interactions.”. Methods Mol Biol 177 (2001): , 177, 241-59. Web.
Bessler, JB, JZ Torres, and VA Zakian. “The Pif1p subfamily of helicases: region-specific DNA helicases?”. Trends Cell Biol 11.2 (2001): , 11, 2, 60-5. Print.Abstract
DNA helicases are required for DNA replication, recombination and repair. Despite a common enzymatic function - the ability to unwind duplex DNA - most helicases share only limited amino acid sequence similarity. Helicases that have significant sequence similarity define a subfamily. It remains unclear, however, how this sequence similarity relates to helicase function. The Saccharomyces cerevisiae Pif1p helicase is the prototype member of a helicase subfamily that is conserved from yeasts to humans. As the two Pif1p subfamily members studied to date affect the same DNA sequences, the amino acid similarity that defines this subfamily might reflect common substrates.
Tsukamoto, Y, AK Taggart, and VA Zakian. “The role of the Mre11-Rad50-Xrs2 complex in telomerase- mediated lengthening of Saccharomyces cerevisiae telomeres.”. Curr Biol 11.17 (2001): , 11, 17, 1328-35. Print.Abstract
BACKGROUND: The Saccharomyces Mre11p, Rad50p, and Xrs2p proteins form a complex, called the MRX complex, that is required to maintain telomere length. Cells lacking any one of the three MRX proteins and Mec1p, an ATM-like protein kinase, undergo telomere shortening and ultimately die, phenotypes characteristic of cells lacking telomerase. The other ATM-like yeast kinase, Tel1p, appears to act in the same pathway as MRX: mec1 tel1 cells have telomere phenotypes similar to those of telomerase-deficient cells, whereas the phenotypes of tel1 cells are not exacerbated by the loss of a MRX protein. RESULTS: The nuclease activity of Mre11p was found to be dispensable for the telomerase-promoting activity of the MRX complex. The association of the single-stranded TG1-3 DNA binding protein Cdc13p with yeast telomeres occurred efficiently in the absence of Tel1p, Mre11p, Rad50p, or Xrs2p. Targeting of catalytically active telomerase to the telomere suppressed the senescence phenotype of mec1 mrx or mec1 tel1 cells. Moreover, when telomerase was targeted to telomeres, telomere lengthening was robust in mec1 mrx and mec1 tel1 cells. CONCLUSIONS: These data rule out models in which the MRX complex is necessary for Cdc13p binding to telomeres or in which the MRX complex is necessary for the catalytic activity of telomerase. Rather, the data suggest that the MRX complex is involved in recruiting telomerase activity to yeast telomeres.
Mangahas, JL, et al.Repair of chromosome ends after telomere loss in Saccharomyces.”. Mol Biol Cell 12.12 (2001): , 12, 12, 4078-89. Print.Abstract
Removal of a telomere from yeast chromosome VII in a strain having two copies of this chromosome often results in its loss. Here we show that there are three pathways that can stabilize this broken chromosome: homologous recombination, nonhomologous end joining, and de novo telomere addition. Both in a wild-type and a recombination deficient rad52 strain, most stabilization events were due to homologous recombination, whereas nonhomologous end joining was exceptionally rare. De novo telomere addition was relatively rare, stabilizing <0.1% of broken chromosomes. Telomere addition took place at a very limited number of sites on chromosome VII, most occurring close to a 35-base pair stretch of telomere-like DNA that is normally approximately 50 kb from the left telomere of chromosome VII. In the absence of the Pif1p DNA helicase, telomere addition events were much more frequent and were not concentrated near the 35-base pair tract of telomere-like DNA. We propose that internal tracts of telomere-like sequence recruit telomerase by binding its anchor site and that Pif1p inhibits telomerase by dissociating DNA primer-telomerase RNA interactions. These data also show that telomeric DNA is essential for the stable maintenance of linear chromosomes in yeast.
Balakumaran, BS, CH Freudenreich, and VA Zakian. “CGG/CCG repeats exhibit orientation-dependent instability and orientation-independent fragility in Saccharomyces cerevisiae.”. Hum Mol Genet 91 (2000): , 9, 1, 93-100. Print.Abstract
An expansion to >200 CGG/CCG repeats (hereafter called CGG) in the 5' region of the FMR1 gene causes fragile X syndrome, and this locus becomes a folate-sensitive fragile site. We used Saccharomyces cerevisiae as a model system to study the stability and fragility of CGG repeats. Tracts of (CGG)(81)and (CGG)(160)were integrated onto a yeast chromosome in both orientations relative to the nearest replication origin. Tracts of this length are pre-mutation alleles in humans, with a high probability of expansion in future generations. The CGG tracts in yeast colonies showed a length-dependent instability with longer tracts being more prone to contraction than shorter tracts. In addition, there was an orientation bias for tract stability with tracts having fewer contractions when the CCG strand was the template for lagging strand synthesis. Expansions of the CGG tracts also occurred in an orientation-dependent manner, although at a lower frequency than contractions. To determine whether CGG tracts are fragile sites in yeast, the CGG tracts were flanked by direct repeats, and the rate of recombination between the repeats determined. Strains carrying the (CGG)(160)tract in either orientation had a large increase in their rate of recombination compared with a no-tract control strain. Because this increase was dependent on genes involved in double-strand break repair, recombination was likely to be initiated by CGG tract-induced breakage between the direct repeats. The observation of orientation-dependent instability and orientation-independent fragility suggests that at least some aspects of their underlying mechanisms are different.
Zhou, J, et al.Pif1p helicase, a catalytic inhibitor of telomerase in yeast.”. Science 289.5480 (2000): , 289, 5480, 771-4. Print.Abstract
Mutations in the yeast Saccharomyces cerevisiae PIF1 gene, which encodes a 5'-to-3' DNA helicase, cause telomere lengthening and a large increase in the formation rate of new telomeres. Here, we show that Pif1p acts by inhibiting telomerase rather than telomere-telomere recombination, and this inhibition requires the helicase activity of Pif1p. Overexpression of enzymatically active Pif1p causes telomere shortening. Thus, Pif1p is a catalytic inhibitor of telomerase-mediated telomere lengthening. Because Pif1p is associated with telomeric DNA in vivo, its effects on telomeres are likely direct. Pif1p-like helicases are found in diverse organisms, including humans. We propose that Pif1p-mediated inhibition of telomerase promotes genetic stability by suppressing telomerase-mediated healing of double-strand breaks.
Ivessa, AS, JQ Zhou, and VA Zakian. “The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA.”. Cell 100.4 (2000): , 100, 4, 479-89. Print.Abstract
Replication of Saccharomyces ribosomal DNA (rDNA) proceeds bidirectionally from origins in a subset of the approximately 150 tandem repeats, but the leftward-moving fork stops when it encounters the replication fork barrier (RFB). The Pif1p helicase and the highly related Rrm3p were rDNA associated in vivo. Both proteins affected rDNA replication but had opposing effects on fork progression. Pif1p helped maintain the RFB. Rrm3p appears to be the replicative helicase for rDNA as it acted catalytically to promote fork progression throughout the rDNA. Loss of Rrm3p increased rDNA breakage and accumulation of rDNA circles, whereas breakage and circles were less common in pif1 cells. These data support a model in which replication fork pausing causes breakage and recombination in the rDNA.
Qi, H, and VA Zakian. “The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase alpha and the telomerase-associated est1 protein.”. Genes Dev 14.14 (2000): , 14, 14, 1777-88. Print.Abstract
Saccharomyces telomeres consist of approximately 350 bp of C(1-3)A/TG(1-3) DNA. Most of this approximately 350 bp is replicated by standard, semiconservative DNA replication. After conventional replication, the C(1-3)A strand is degraded to generate a long single strand TG(1-3) tail that can serve as a substrate for telomerase. Cdc13p is a single strand TG(1-3) DNA-binding protein that localizes to telomeres in vivo. Genetic data suggest that the Cdc13p has multiple roles in telomere replication. We used two hybrid analysis to demonstrate that Cdc13p interacted with both the catalytic subunit of DNA polymerase alpha, Pol1p, and the telomerase RNA-associated protein, Est1p. The association of these proteins was confirmed by biochemical analysis using full-length or nearly full-length proteins. Point mutations in either CDC13 or POL1 that reduced the Cdc13p-Pol1p interaction resulted in telomerase mediated telomere lengthening. Over-expression of the carboxyl terminus of Est1p partially suppressed the temperature sensitive lethality of a cdc13-1 strain. We propose that Cdc13p's interaction with Est1p promotes TG(1-3) strand lengthening by telomerase and its interaction with Pol1p promotes C(1-3)A strand resynthesis by DNA polymerase alpha.
Teng, SC, et al.Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process.”. Mol Cell 64 (2000): , 6, 4, 947-52. Print.Abstract
Type II survivors arise in Saccharomyces cells lacking telomerase by a recombinational pathway that results in very long and heterogeneous length telomeres. Here we show that type II telomeres appeared abruptly in a population of cells with very short telomeres. Once established, these long telomeres progressively shortened. Short telomeres were substrates for rare, one-step lengthening events. The generation of type II survivors was absolutely Rad50p dependent. In a telomerase-proficient cell, the telomere-binding Rif proteins inhibited telomerase lengthening of telomeres. In a telomerase-deficient strain, Rif proteins, especially Rif2p, inhibited type II recombination. These data argue that only short telomeres are substrates for type II recombination and suggest that the donor for this recombination is not a chromosomal telomere.
de Bruin, D, et al.Telomere folding is required for the stable maintenance of telomere position effects in yeast.”. Mol Cell Biol 20.21 (2000): , 20, 21, 7991-8000. Print.Abstract
Yeast telomeres reversibly repress the transcription of adjacent genes, a phenomenon called telomere position effect (TPE). TPE is thought to result from Rap1 and Sir protein-mediated spreading of heterochromatin-like structures from the telomeric DNA inwards. Because Rap1p is associated with subtelomeric chromatin as well as with telomeric DNA, yeast telomeres are proposed to form fold-back or looped structures. TPE can be eliminated in trans by deleting SIR genes or in cis by transcribing through the C(1-3)A/TG(1-3) tract of a telomere. We show that the promoter of a telomere-linked URA3 gene was inaccessible to restriction enzymes and that accessibility increased both in a sir3 strain and upon telomere transcription. We also show that subtelomeric chromatin was hypoacetylated at histone H3 and at each of the four acetylatable lysines in histone H4 and that histone acetylation increased both in a sir3 strain and when the telomere was transcribed. When transcription through the telomeric tract occurred in G(1)-arrested cells, TPE was lost, demonstrating that activation of a silenced telomeric gene can occur in the absence of DNA replication. The loss of TPE that accompanied telomere transcription resulted in the rapid and efficient loss of subtelomeric Rap1p. We propose that telomere transcription disrupts core heterochromatin by eliminating Rap1p-mediated telomere looping. This interpretation suggests that telomere looping is critical for maintaining TPE.
Tham, WH, and VA Zakian. “Telomeric tethers.”. Nature 403.6765 (2000): , 403, 6765, 34-5. Web.
Teng, SC, and VA Zakian. “Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae.”. Mol Cell Biol 19.12 (1999): , 19, 12, 8083-93. Print.Abstract
Many Saccharomyces telomeres bear one or more copies of the repetitive Y' element followed by approximately 350 bp of telomerase-generated C(1-3)A/TG(1-3) repeats. Although most cells lacking a gene required for the telomerase pathway die after 50 to 100 cell divisions, survivors arise spontaneously in such cultures. These survivors have one of two distinct patterns of telomeric DNA (V. Lundblad and E. H. Blackburn, Cell 73:347-360, 1993). The more common of the two patterns, seen in type I survivors, is tandem amplification of Y' followed by very short tracts of C(1-3)A/TG(1-3) DNA. By determining the structure of singly tagged telomeres, chromosomes in type II survivors were shown to end in very long and heterogeneous-length tracts of C(1-3)A/TG(1-3) DNA, with some telomeres having 12 kb or more of C(1-3)A/TG(1-3) repeats. Maintenance of these long telomeres required the continuous presence of Rad52p. Whereas type I survivors often converted to the type II structure of telomeric DNA, the type II pattern was maintained for at least 250 cell divisions. However, during outgrowth, the structure of type II telomeres was dynamic, displaying gradual shortening as well as other structural changes that could be explained by continuous gene conversion events with other telomeres. Although most type II survivors had a growth rate similar to that of telomerase-proficient cells, their telomeres slowly returned to wild-type lengths when telomerase was reintroduced. The very long and heterogeneous-length telomeres characteristic of type II survivors in Saccharomyces are reminiscent of the telomeres in immortal human cell lines and tumors that maintain telomeric DNA in the absence of telomerase.
Freudenreich, CH, SM Kantrow, and VA Zakian. “Expansion and length-dependent fragility of CTG repeats in yeast.”. Science 279.5352 (1998): , 279, 5352, 853-6. Print.Abstract
Expansion of DNA trinucleotide repeats (TNRs) is the causative mutation in a growing number of human genetic diseases. Large expansions of a CTG tract were obtained and shown by genetic and physical assays to be length-dependent sites of chromosome breakage in Saccharomyces cerevisiae. Deletion of RAD27, which encodes a nuclease involved in Okazaki fragment processing, caused length-dependent destabilization of CTG tracts and a substantial increase in expansion frequency. The genetic assay described here can be used to evaluate other factors that induce TNR expansion or chromosome fragility in humans.
Bourns, BD, et al.Sir proteins, Rif proteins, and Cdc13p bind Saccharomyces telomeres in vivo.”. Mol Cell Biol 18.9 (1998): , 18, 9, 5600-8. Print.Abstract
Although a surprisingly large number of genes affect yeast telomeres, in most cases it is not known if their products act directly or indirectly. We describe a one-hybrid assay for telomere binding proteins and use it to establish that six proteins that affect telomere structure or function but which had not been shown previously to bind telomeres in vivo are indeed telomere binding proteins. A promoter-defective allele of HIS3 was placed adjacent to a chromosomal telomere. Candidate proteins fused to a transcriptional activation domain were tested for the ability to activate transcription of the telomere-linked HIS3 gene. Using this system, Rif1p, Rif2p, Sir2p, Sir3p, Sir4p, and Cdc13p were found to be in vivo telomere binding proteins. None of the proteins activated the same reporter gene when it was at an internal site on the chromosome. Moreover, Cdc13p did not activate the reporter gene when it was adjacent to an internal tract of telomeric sequence, indicating that Cdc13p binding was telomere limited in vivo. The amino-terminal 20% of Cdc13p was sufficient to target Cdc13p to a telomere, suggesting that its DNA binding domain was within this portion of the protein. Rap1p, Rif1p, Rif2p, Sir4p, and Cdc13p activated the telomeric reporter gene in a strain lacking Sir3p, which is essential for telomere position effect (TPE). Thus, the telomeric association of these proteins did not require any of the chromatin features necessary for TPE. The data support models in which the telomere acts as an initiation site for TPE by recruiting silencing proteins to the chromosome end.
Stavenhagen, JB, and VA Zakian. “Yeast telomeres exert a position effect on recombination between internal tracts of yeast telomeric DNA.”. Genes Dev 12.19 (1998): , 12, 19, 3044-58. Print.Abstract
In Saccharomyces cerevisiae, proximity to a telomere affects both transcription and replication of adjacent DNA. In this study, we show that telomeres also impose a position effect on mitotic recombination. The rate of recombination between directly repeated tracts of telomeric C1-3A/TG1-3 DNA was reduced severely by proximity to a telomere. In contrast, recombination of two control substrates was not affected by telomere proximity. Thus, unlike position effects on transcription or replication, inhibition of recombination was sequence specific. Moreover, the repression of recombination was not under the same control as transcriptional repression (telomere position effect; TPE), as mutations in genes essential for TPE did not alleviate telomeric repression of recombination. The reduction in recombination between C1-3A/TG1-3 tracts near the telomere was caused by an absence of Rad52p-dependent events as well as a reduction in Rad1p-dependent events. The sequence-specific repression of recombination near the telomere was eliminated in cells that overexpressed the telomere-binding protein Rap1p, a condition that also increased recombination between C1-3A/TG1-3 tracts at internal positions on the chromosome. We propose that the specific inhibition between C1-3A/TG1-3 tracts near the telomere occurs through the action of a telomere-specific end-binding protein that binds to the single-strand TG1-3 tail generated during the processing of recombination intermediates. The recombination inhibitor protein may also block recombination between endogenous telomeres.
Zakian, VA. “Life and cancer without telomerase.”. Cell 91.1 (1997): , 91, 1, 1-3. Print.
Freudenreich, CH, JB Stavenhagen, and VA Zakian. “Stability of a CTG/CAG trinucleotide repeat in yeast is dependent on its orientation in the genome.”. Mol Cell Biol 17.4 (1997): , 17, 4, 2090-8. Print.Abstract
Trinucleotide repeat expansion is the causative mutation for a growing number of diseases including myotonic dystrophy, Huntington's disease, and fragile X syndrome. A (CTG/CAG)130 tract cloned from a myotonic dystrophy patient was inserted in both orientations into the genome of Saccharomyces cerevisiae. This insertion was made either very close to the 5' end or very close to the 3' end of a URA3 transcription unit. Regardless of its orientation, no evidence was found for triplet-mediated transcriptional repression of the nearby gene. However, the stability of the tract correlated with its orientation on the chromosome. In one orientation, the (CTG/CAG)130 tract was very unstable and prone to deletions. In the other orientation, the tract was stable, with fewer deletions and two possible cases of expansion detected. Analysis of the direction of replication through the region showed that in the unstable orientation the CTG tract was on the lagging-strand template and that in the stable orientation the CAG tract was on the lagging-strand template. The orientation dependence of CTG/CAG tract instability seen in this yeast system supports models involving hairpin-mediated polymerase slippage previously proposed for trinucleotide repeat expansion.
Monson, EK, D de Bruin, and VA Zakian. “The yeast Cac1 protein is required for the stable inheritance of transcriptionally repressed chromatin at telomeres.”. Proc Natl Acad Sci U S A 94.24 (1997): , 94, 24, 13081-6. Print.Abstract
Cac1p is a subunit of yeast chromatin assembly factor I (yCAF-I) that is thought to assemble nucleosomes containing diacetylated histones onto newly replicated DNA [Kaufman, P. D., Kobayashi, R. & Stillman, B. (1997) Genes Dev. 11, 345-357]. Although cac1 delta cells could establish and maintain transcriptional repression at telomeres, they displayed a reduced heritability of the repressed state. Single-cell analysis revealed that individual cac1 delta cells switch from transcriptionally "off" to transcriptionally "on" more often per cell cycle than wild-type cells. In addition, cac1 delta cells were defective for transcriptional silencing near internal tracts of C(1-3)A sequence, but they showed no defect in silencing at the silent mating type loci when analyzed by a reverse transcription-PCR assay. Despite the loss of transcriptional silencing at telomeres and internal C(1-3)A tracts, subtelomeric DNA was organized into nucleosomes that had all of the features characteristic of silent chromatin, such as hypoacetylation of histone H4 and protection from methylation by the Escherichia coli dam methylase. Thus, these features of silent chromatin are not sufficient for stable maintenance of a silent chromatin state. We propose that the inheritance of the transcriptionally repressed state requires the specific pattern of histone acetylation conferred by yCAF-I-mediated nucleosome assembly.
Schulz, VP, et al.Accelerated loss of telomeric repeats may not explain accelerated replicative decline of Werner syndrome cells.”. Hum Genet 97.6 (1996): , 97, 6, 750-4. Print.Abstract
The Werner syndrome (WS) is characterized by the premature onset and accelerated rate of development of major geriatric disorders, including atherosclerosis, diabetes mellitus, osteoporosis, ocular cataracts, and various neoplasms. Cultures of WS skin-fibroblastlike cells have been previously shown to undergo accelerated rates of decline of the replicative potentials and to exhibit variegated chromosomal translocations and deletions. Since the replicative decline of normal somatic cells is associated with a loss of telomeric repeats, we investigated the kinetics of telomeric repeat loss in WS cells. The mean length of telomere restriction fragments (TRF) from the earliest passages of WS cells studied was not shorter than those of controls, possibly reflecting selective pressure for subsets of cells with relatively high residual replicative capacity. Statistical evidence indicated an accelerated shortening of TRF length in serially passaged WS cultures, but the mean TRF lengths of WS cultures that had ceased replicating were significantly longer than those of senescent controls. Thus, while accelerated loss of telomeric repeats could potentially explain the rapid decline in proliferation of WS cells, it is possible that WS cells exit the cell cycle via mechanisms that differ from those of replicatively senescent cells from control subjects.
Wellinger, RJ, et al.Evidence for a new step in telomere maintenance.”. Cell 85.3 (1996): , 85, 3, 423-33. Print.Abstract
The strand of telomeric DNA that runs 5'-3' toward a chromosome end is typically G rich. Telomerase-generated G tails are expected at one end of individual DNA molecules. Saccharomyces telomeres acquire TG1-3 tails late in S phase. Moreover, the telomeres of linear plasmids can interact when the TG1-3 tails are present. Molecules that mimic the structures predicted for telomere replication intermediates were generated in vitro. These in vitro generated molecules formed telomere-telomere interactions similar to those on molecules isolated from yeast, but only if both ends that interacted had a TG1-3 tail. Moreover, TG1-3 tails were generated in vivo in cells lacking telomerase. These data suggest a new step in telomere maintenance, cell cycle-regulated degradation of the C1-3A strand, which can generate a potential substrate for telomerase and telomere-binding proteins at every telomere.
Zakian, VA. “Structure, function, and replication of Saccharomyces cerevisiae telomeres.”. Annu Rev Genet 30 (1996): , 30, 141-72. Web.Abstract
A combination of classical genetic, biochemical, and molecular biological approaches have generated a rather detailed understanding of the structure and function of Saccharomyces telomeres. Yeast telomeres are essential to allow the cell to distinguish intact from broken chromosomes, to protect the end of the chromosome from degradation, and to facilitate the replication of the very end of the chromosome. In addition, yeast telomeres are a specialized site for gene expression in that the transcription of genes placed near them is reversibly repressed. A surprisingly large number of genes have been identified that influence either telomere structure or telomere function (or both), although in many cases the mechanism of action of these genes is poorly understood. This article reviews the recent literature on telomere biology and highlights areas for future research.
Zakian, VA. “Telomere functions: lessons from yeast.”. Trends Cell Biol 61 (1996): , 6, 1, 29-33. Print.Abstract
Telomeres are specialized DNA protein structures that form the ends of eukaryotic chromosomes. In yeast, loss of even a single telomere causes a prolonged, but transitory, cell-cycle arrest. During this arrest, many broken chromosomes acquire a new telomere by one of three pathways, although at the cost of a partial loss of heterozygosity. In addition, a substantial fraction of the chromosomes lacking a telomere is lost, which generates an aneuploid cell. In these cases, the broken chromosome is usually replicated and segregated for ten or more cell divisions in unstable form. Extrapolation from yeast suggests that the gradual loss of telomeric DNA that accompanies ageing in humans may initiate the kinds of chromosomal rearrangements and genetic changes that are associated with tumorigenesis.
Lin, JJ, and VA Zakian. “The Saccharomyces CDC13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo.”. Proc Natl Acad Sci U S A 93.24 (1996): , 93, 24, 13760-5. Print.Abstract
Saccharomyces telomeres consist of approximately 300 bp of C1-3A/TG1-3 DNA. Cells lacking the activity of the essential gene CDC13 display a cell cycle arrest mediated by the DNA damage sensing, RAD9 cell cycle checkpoint, presumably because they exhibit strand-specific loss of telomeric and telomere-adjacent DNA [Garvik, B., Carson, M. & Hartwell, L. (1995) Mol. Celi. Biol. 15,6128-6138]. Cdc13p expressed in Escherichia coli or overexpressed in yeast bound specifically to single-strand TG1-3 DNA. The specificity of binding displayed by Cdc13p in vitro indicates that in vivo it could bind to both the short, constitutive single-strand TG1-3 tails thought to be present at telomeres at most times in the cell cycle as well as to the long single-strand TG1-3 tails that are intermediates in telomere replication. Genes located near yeast telomeres are transcriptionally repressed, a phenomenon known as telomere position effect. Cells overexpressing a mutant form of Cdc13p had reduced telomere position effect at high temperatures. These data suggest that Cdc13p functions by binding directly to telomeric DNA, thereby limiting its accessibility to degradation and transcription as well as masking it from factors that detect damaged DNA.
Runge, KW, and VA Zakian. “TEL2, an essential gene required for telomere length regulation and telomere position effect in Saccharomyces cerevisiae.”. Mol Cell Biol 16.6 (1996): , 16, 6, 3094-105. Print.Abstract
The DNA-protein complexes at the ends of linear eukaryotic chromosomes are called the telomeres. In Saccharomyces cerevisiae, telomeric DNA consists of a variable length of the short repeated sequence C1-3A. The length of yeast telomeres can be altered by mutation, by changing the levels of telomere binding proteins, or by increasing the amount of C1-3A DNA sequences. Cells bearing the tel1-1 or tel2-1 mutations, known previously to have short telomeres, did not respond to perturbations that caused telomere lengthening in wild-type cells. The transcription of genes placed near yeast telomeres is reversibly repressed, a phenomenon called the telomere position effect. The tel2-1 mutation reduced the position effect but did not affect transcriptional repression at the silent mating type cassettes, HMRa and HML alpha. The TEL2 gene was cloned, sequenced, and disrupted. Cells lacking TEL2 function died, with some cells arresting as large cells with three or four small protrusions or "blebs."
Zakian, VA. “ATM-related genes: what do they tell us about functions of the human gene?”. Cell 82.5 (1995): , 82, 5, 685-7. Print.
Wiley, EA, and VA Zakian. “Extra telomeres, but not internal tracts of telomeric DNA, reduce transcriptional repression at Saccharomyces telomeres.”. Genetics 139.1 (1995): , 139, 1, 67-79. Print.Abstract
Yeast telomeric DNA is assembled into a nonnucleosomal chromatin structure known as the telosome, which is thought to influence the transcriptional repression of genes placed in its vicinity, a phenomenon called telomere position effect (TPE). The product of the RAP1 gene, Rap1p, is a component of the telosome. We show that the fraction of cells exhibiting TPE can be substantially reduced by expressing large amounts of a deletion derivative of Rap1p that is unable to bind DNA, called Rap1 delta BBp, or by introducing extra telomeres on a linear plasmid, presumably because both compete in trans with telomeric chromatin for factor(s) important for TPE. This reduction in TPE, observed in three different strains, was demonstrated for two different genes, each assayed at a different telomere. In contrast, the addition of internal tracts of telomeric DNA on a circular plasmid had very little effect on TPE. The product of the SIR3 gene, Sir3p, appears to be limiting for TPE. Overexpression of Sir3p completely suppressed the reduction in TPE observed with expression of Rap1 delta BBp, but did not restore high levels of TPE to cells with extra telomeres. These results suggest that extra telomeres must titrate a factor other than Sir3p that is important for TPE. These results also provide evidence for a terminus-specific binding factor that is a factor with a higher affinity for DNA termini than for nonterminal tracts of telomeric DNA and indicate that this factor is important for TPE.
Lin, JJ, and VA Zakian. “An in vitro assay for Saccharomyces telomerase requires EST1.”. Cell 81.7 (1995): , 81, 7, 1127-35. Print.Abstract
Telomerase activity was demonstrated in cell-free extracts from S. cerevisiae through the use of a PCR-based assay. As expected, this activity was eliminated by RNase or phenol treatment of the extract and was dependent on dGTP and dTTP. Telomerase was not detected in extracts prepared from cells grown for approximately 30 or more cell divisions in the absence of the EST1 product, Est1p. TLC1 RNA, which determines the sequence of telomeric DNA in vivo, was present in normal amounts in est1 delta cells. Moreover, TLC1 RNA specifically precipitated with epitope-tagged Est1p. These data indicate that Est1p is either a subunit of yeast telomerase or an accessory protein associated with telomerase that is essential in vitro for its activity.
Wright, JH, and VA Zakian. “Protein-DNA interactions in soluble telosomes from Saccharomyces cerevisiae.”. Nucleic Acids Res 23.9 (1995): , 23, 9, 1454-60. Print.Abstract
Telomeric DNA in Saccharomyces is organized into a non-nucleosomal chromatin structure called the telosome that can be released from chromosome ends in soluble form by nuclease digestion (Wright, J. H., Gottschling, D. E. and Zakian, V. A. (1992) Genes Dev. 6, 197-210). The protein-DNA interactions of soluble telosomes were investigated by monitoring isolated telomeric DNA fragments for the retention of bound protein using both gel mobility shift and nitrocellulose filter-binding assays. Telosomal proteins remained associated with telomeric DNA at concentrations of ethidium bromide that dissociated nucleosomes. The protein-DNA interactions in the yeast telosome were also disrupted by much lower salt concentrations than those known to disrupt either the interactions of ciliate terminus-binding proteins with telomeric DNA or the interactions of histones with DNA in nucleosomes. Taken together, these data corroborate previously published nuclease mapping data indicating that telosomes are distinct in structure from conventional nucleosomes. These data also indicate that yeast do not possess telomere binding proteins similar to those detected in ciliates that remain tightly bound to telomeric DNA even in high salt. In addition, the characteristic gel mobility shift of soluble telosomes could be mimicked by complexes formed in vitro with yeast telomeric DNA and recombinant Rap1p suggesting that Rap1p, a known component of soluble yeast telosomes (Wright, J. H., Gottschling, D. E. and Zakian, V. A. (1992) Genes Dev. 6, 197-210; Conrad, M. N., Wright, J. H., Wolf, A. J. and Zakian, V. A. (1990) Cell 63, 739-750), is likely to be the major structural protein bound directly to yeast telomeric DNA.
Zakian, VA. “Telomeres: beginning to understand the end.”. Science 270.5242 (1995): , 270, 5242, 1601-7. Print.Abstract
Telomeres are the protein-DNA structures at the ends of eukaryotic chromosomes. In yeast, and probably most other eukaryotes, telomeres are essential. They allow the cell to distinguish intact from broken chromosomes, protect chromosomes from degradation, and are substrates for novel replication mechanisms. Telomeres are usually replicated by telomerase, a telomere-specific reverse transcriptase, although telomerase-independent mechanisms of telomere maintenance exist. Telomere replication is both cell cycle- and developmentally regulated, and its control is likely to be complex. Because telomere loss causes the kinds of chromosomal changes associated with cancer and aging, an understanding of telomere biology has medical relevance.
Stavenhagen, JB, and VA Zakian. “Internal tracts of telomeric DNA act as silencers in Saccharomyces cerevisiae.”. Genes Dev 812 (1994): , 8, 12, 1411-22. Print.Abstract
Telomeric position effect (TPE) refers to the ability of telomeres to repress the transcription of genes in their vicinity. Internal stretches of C1-3A DNA, the sequence found at Saccharomyces telomeres, also repressed transcription of nearby genes. This repression, hereafter called C1-3A-based silencing, was observed at several chromosomal loci, including on a circular chromosome. The magnitude of C1-3A-based silencing was increased by both proximity to a telomere and increased length of the C1-3A tracts. C1-3A-based silencing was affected by many of the same genes and conditions that influence TPE and acted in an orientation-independent manner. Thus, in yeast, an expanded array of a simple repetitive DNA, C1-3A, is sufficient to promote the assembly of a transcriptionally silent chromosomal domain.