Pinter, Stefan F, Sarah D Aubert, and Virginia A Zakian. “The Schizosaccharomyces pombe Pfh1p DNA helicase is essential for the maintenance of nuclear and mitochondrial DNA.”. Mol Cell Biol 28.21 (2008): , 28, 21, 6594-608. Web.Abstract
Schizosaccharomyces pombe Pfh1p is an essential member of the Pif family of 5'-3' DNA helicases. The two Saccharomyces cerevisiae homologs, Pif1p and Rrm3p, function in nuclear DNA replication, telomere length regulation, and mitochondrial genome integrity. We demonstrate here the existence of multiple Pfh1p isoforms that localized to either nuclei or mitochondria. The catalytic activity of Pfh1p was essential in both cellular compartments. The absence of nuclear Pfh1p resulted in G(2) arrest and accumulation of DNA damage foci, a finding suggestive of an essential role in DNA replication. Exogenous DNA damage resulted in localization of Pfh1p to DNA damage foci, suggesting that nuclear Pfh1p also functions in DNA repair. The absence of mitochondrial Pfh1p caused rapid depletion of mitochondrial DNA. Despite localization to nuclei and mitochondria in S. pombe, neither of the S. cerevisiae homologs, nor human PIF1, suppressed the lethality of pfh1Delta cells. However, the essential nuclear function of Pfh1p could be supplied by Rrm3p. Expression of Rrm3p suppressed the accumulation of DNA damage foci but not the hydroxyurea sensitivity of cells depleted of nuclear Pfh1p. Together, these data demonstrate that Pfh1p has essential roles in the replication of both nuclear and mitochondrial DNA.
Chan, Angela, Jean-Baptiste Boulé, and Virginia A Zakian. “Two pathways recruit telomerase to Saccharomyces cerevisiae telomeres.”. PLoS Genet 410 (2008): , 4, 10, e1000236. Web.Abstract
The catalytic subunit of yeast telomerase, Est2p, is a telomere associated throughout most of the cell cycle, while the Est1p subunit binds only in late S/G2 phase, the time of telomerase action. Est2p binding in G1/early S phase requires a specific interaction between telomerase RNA (TLC1) and Ku80p. Here, we show that in four telomerase-deficient strains (cdc13-2, est1A, tlc1-SD, and tlc1-BD), Est2p telomere binding was normal in G1/early S phase but reduced to about 40-50% of wild type levels in late S/G2 phase. Est1p telomere association was low in all four strains. Wild type levels of Est2p telomere binding in late S/G2 phase was Est1p-dependent and required that Est1p be both telomere-bound and associated with a stem-bulge region in TLC1 RNA. In three telomerase-deficient strains in which Est1p is not Est2p-associated (tlc1-SD, tlc1-BD, and est2A), Est1p was present at normal levels but its telomere binding was very low. When the G1/early S phase and the late S/G2 phase telomerase recruitment pathways were both disrupted, neither Est2p nor Est1p was telomere-associated. We conclude that reduced levels of Est2p and low Est1p telomere binding in late S/G2 phase correlated with an est phenotype, while a WT level of Est2p binding in G1 was not sufficient to maintain telomeres. In addition, even though Cdc13p and Est1p interact by two hybrid, biochemical and genetic criteria, this interaction did not occur unless Est1p was Est2p-associated, suggesting that Est1p comes to the telomere only as part of the holoenzyme. Finally, the G1 and late S/G2 phase pathways for telomerase recruitment are distinct and are likely the only ones that bring telomerase to telomeres in wild-type cells.
Mondoux, Michelle A, Jillian G Scaife, and Virginia A Zakian. “Differential nuclear localization does not determine the silencing status of Saccharomyces cerevisiae telomeres.”. Genetics 177.4 (2007): , 177, 4, 2019-29. Web.Abstract
In Saccharomyces cerevisiae, genes near telomeres are transcriptionally repressed, a phenomenon termed telomere position effect (TPE). Yeast telomeres cluster near the nuclear periphery, as do foci of proteins essential for TPE: Rap1p, Sir2-4p, and yKu70p/yKu80p. However, it is not clear if localization of telomeres to the periphery actually contributes to TPE. We examined the localization patterns of two telomeres with different levels of TPE: truncated VII-L and native VI-R. For both telomeres, localization to the nuclear periphery or to the silencing foci was neither necessary nor sufficient for TPE. Moreover, there was no correlation between TPE levels and the extent of localization. Tethering the truncated VII-L telomere to the nuclear periphery resulted in a modest increase in TPE. However, tethering did not bypass the roles of yKu70p, Sir4p, or Esc1p in TPE. Using mutations in RIF genes that bypass the role of Ku in TPE, a correlation between the level of silencing and the number of Rap1p foci present in the nucleus was observed, suggesting that Sir protein levels at telomeres determine both the level of TPE and the number of foci.
Sabourin, Michelle, et al.A flexible protein linker improves the function of epitope-tagged proteins in Saccharomyces cerevisiae.”. Yeast 24.1 (2007): , 24, 1, 39-45. Web.Abstract
Epitope tagging permits the detection of proteins when protein-specific antibodies are not available. However, the epitope tag can reduce the function of the tagged protein. Here we describe a cassette that can be used to introduce an eight amino acid flexible linker between multiple Myc epitopes and the open reading frame of a given gene. We show that inserting the linker improves the in vivo ability of the telomerase subunits Est2p and Est1p to maintain telomere length. The methods used here are generally applicable to improve the function of tagged proteins in both Saccharomyces cerevisiae and Schizosaccharomyces pombe.
Vega, Leticia R, et al.Sensitivity of yeast strains with long G-tails to levels of telomere-bound telomerase.”. PLoS Genet 36 (2007): , 3, 6, e105. Web.Abstract
The Saccharomyces cerevisiae Pif1p helicase is a negative regulator of telomere length that acts by removing telomerase from chromosome ends. The catalytic subunit of yeast telomerase, Est2p, is telomere associated throughout most of the cell cycle, with peaks of association in both G1 phase (when telomerase is not active) and late S/G2 phase (when telomerase is active). The G1 association of Est2p requires a specific interaction between Ku and telomerase RNA. In mutants lacking this interaction, telomeres were longer in the absence of Pif1p than in the presence of wild-type PIF1, indicating that endogenous Pif1p inhibits the active S/G2 form of telomerase. Pif1p abundance was cell cycle regulated, low in G1 and early S phase and peaking late in the cell cycle. Low Pif1p abundance in G1 phase was anaphase-promoting complex dependent. Thus, endogenous Pif1p is unlikely to act on G1 bound Est2p. Overexpression of Pif1p from a non-cell cycle-regulated promoter dramatically reduced viability in five strains with impaired end protection (cdc13-1, yku80Delta, yku70Delta, yku80-1, and yku80-4), all of which have longer single-strand G-tails than wild-type cells. This reduced viability was suppressed by deleting the EXO1 gene, which encodes a nuclease that acts at compromised telomeres, suggesting that the removal of telomerase by Pif1p exposed telomeres to further C-strand degradation. Consistent with this interpretation, depletion of Pif1p, which increases the amount of telomere-bound telomerase, suppressed the temperature sensitivity of yku70Delta and cdc13-1 cells. Furthermore, eliminating the pathway that recruits Est2p to telomeres in G1 phase in a cdc13-1 strain also reduced viability. These data suggest that wild-type levels of telomere-bound telomerase are critical for the viability of strains whose telomeres are already susceptible to degradation.
Mondoux, Michelle A, and Virginia A Zakian. “Subtelomeric elements influence but do not determine silencing levels at Saccharomyces cerevisiae telomeres.”. Genetics 177.4 (2007): , 177, 4, 2541-6. Web.Abstract
In Saccharomyces cerevisiae, genes placed near telomeres are transcriptionally repressed (telomere position effect, TPE). Although telomeric DNA sequence is the same at all chromosome ends, the subtelomeric elements (STEs) and level of TPE vary from telomere to telomere. We tested whether STEs determine TPE levels. STEs contributed to TPE, as deleting the X element from the VI-R telomere modestly decreased silencing at this telomere. However, STEs were not the major determinant of TPE levels, as inserting the VI-R X element at the truncated VII-L telomere did not increase TPE. These data suggest that the TPE levels of individual telomeres are dependent on some aspect of chromosome context.
Sabourin, Michelle, Creighton T Tuzon, and Virginia A Zakian. “Telomerase and Tel1p preferentially associate with short telomeres in S. cerevisiae.”. Mol Cell 27.4 (2007): , 27, 4, 550-61. Web.Abstract
In diverse organisms, telomerase preferentially elongates short telomeres. We generated a single short telomere in otherwise wild-type (WT) S. cerevisiae cells. The binding of the positive regulators Ku and Cdc13p was similar at short and WT-length telomeres. The negative regulators Rif1p and Rif2p were present at the short telomere, although Rif2p levels were reduced. Two telomerase holoenzyme components, Est1p and Est2p, were preferentially enriched at short telomeres in late S/G2 phase, the time of telomerase action. Tel1p, the yeast ATM-like checkpoint kinase, was highly enriched at short telomeres from early S through G2 phase and even into the next cell cycle. Nonetheless, induction of a single short telomere did not elicit a cell-cycle arrest. Tel1p binding was dependent on Xrs2p and required for preferential binding of telomerase to short telomeres. These data suggest that Tel1p targets telomerase to the DNA ends most in need of extension.
Boulé, Jean-Baptiste, and Virginia A Zakian. “The yeast Pif1p DNA helicase preferentially unwinds RNA DNA substrates.”. Nucleic Acids Res 35.17 (2007): , 35, 17, 5809-18. Web.Abstract
Pif1p is the prototypical member of the PIF1 family of DNA helicases, a subfamily of SFI helicases conserved from yeast to humans. Baker's yeast Pif1p is involved in the maintenance of mitochondrial, ribosomal and telomeric DNA and may also have a general role in chromosomal replication by affecting Okazaki fragment maturation. Here we investigate the substrate preferences for Pif1p. The enzyme was preferentially active on RNA-DNA hybrids, as seen by faster unwinding rates on RNA-DNA hybrids compared to DNA-DNA hybrids. When using forked substrates, which have been shown previously to stimulate the enzyme, Pif1p demonstrated a preference for RNA-DNA hybrids. This preferential unwinding could not be correlated to preferential binding of Pif1p to the substrates that were the most readily unwound. Although the addition of the single-strand DNA-binding protein replication protein A (RPA) stimulated the helicase reaction on all substrates, it did not diminish the preference of Pif1p for RNA-DNA substrates. Thus, forked RNA-DNA substrates are the favored substrates for Pif1p in vitro. We discuss these findings in terms of the known biological roles of the enzyme.
Boulé, Jean-Baptiste, and Virginia A Zakian. “Roles of Pif1-like helicases in the maintenance of genomic stability.”. Nucleic Acids Res 34.15 (2006): , 34, 15, 4147-53. Web.Abstract
The Pif1p family of DNA helicases is conserved from yeast to humans. To date, four members of this family have been analyzed in some detail by in vitro and in vivo assays: the two baker's yeast helicases, ScPif1p and Rrm3p, the fission yeast Pfh1p and the human enzyme hPif1p. In vitro, these enzymes are 5' to 3' DNA helicase and show little processivity. In vivo, ScPif1p, Rrm3p and probably Pfh1p, function in both the nucleus at specific genomic loci and in mitochondria, where they are needed for the stable maintenance of the genome as accessory helicases to the replication machinery. Interestingly, they act on common DNA substrates but appear to have largely non-overlapping cellular functions, ranging from Okazaki fragment processing, telomerase inhibition, to helping the replication fork progress through non-nucleosomal protein-DNA complexes. For example, both ScPif1p and Rrm3p affect the replication of telomeres, but in a different way: Pif1p inhibits telomerase-mediated telomere elongation by directly removing telomerase from a DNA end, whereas Rrm3p facilitates replication through telomeric DNA. Here we review the current knowledge on the Pif1-like helicases, as a first step towards understanding the basis of their functional specialization and mechanism of action.
Azvolinsky, Anna, et al.The S. cerevisiae Rrm3p DNA helicase moves with the replication fork and affects replication of all yeast chromosomes.”. Genes Dev 20.22 (2006): , 20, 22, 3104-16. Web.Abstract
The Saccharomyces cerevisiae DNA helicase Rrm3p is needed for normal fork progression through >1000 discrete sites scattered throughout the genome. Here we show that replication of all yeast chromosomes was markedly delayed in rrm3 cells. Delayed replication was seen even in a region that lacks any predicted Rrm3p-dependent sites. Based on the pattern of replication intermediates in two-dimensional gels, the rate of fork movement in rrm3 cells appeared similar to wild-type except at known Rrm3p-dependent sites. These data suggest that although Rrm3p has a global role in DNA replication, its activity is needed only or primarily at specific, difficult-to-replicate sites. By the criterion of chromatin immunoprecipitation, Rrm3p was associated with both Rrm3p-dependent and -independent sites, and moved with the replication fork through both. In addition, Rrm3p interacted with Pol2p, the catalytic subunit of DNA polymerase epsilon, in vivo. Thus, rather than being recruited to its sites of action when replication forks stall at these sites, Rrm3p is likely a component of the replication fork apparatus.
Mateyak, Maria K, and Virginia A Zakian. “Human PIF helicase is cell cycle regulated and associates with telomerase.”. Cell Cycle 523 (2006): , 5, 23, 2796-804. Web.Abstract
The evolutionarily conserved PIF1 DNA helicase family is important for the maintenance of genome stability in the yeast, Saccharomyces cerevisiae. There are two PIF1 family helicases in S. cerevisiae, Pif1p and Rrm3p that both possess 5'-->3' DNA helicase activity but maintain unique functions in telomerase regulation and semi-conservative DNA replication. Database analysis shows that the PIF1 helicase family is represented by a single homologue in higher eukaryotes. To analyze the function of PIF1 homologues in mammals, we cloned the full length human PIF (hPIF) cDNA. Comparison of hPIF with its S. cerevisiae homologues showed that human PIF is equally similar to Pif1p and Rrm3p. Human PIF was expressed at low levels in a variety of tissues and immunofluorescence analysis showed that ectopic hPIF was localized to nuclear foci. hPIF was expressed in late S/G2 phase of the cell cycle and this cell cycle regulated abundance was conferred by both cell cycle regulated mRNA accumulation and ubiquitin-mediated degradation. Furthermore, hPIF is likely a target of the anaphase promoting complex/cyclosome as its abundance was decreased when an activator of the APC/C was overexpressed. Finally, antibodies against hPIF immunoprecipitated telomerase activity from human cell lines, and we have observed a physical interaction between hPIF and the catalytic subunit of telomerase, hTERT. Our data suggest that human PIF, like S. cerevisiae Pif1p, plays a role in telomerase regulation.
Goudsouzian, Lara K, Creighton T Tuzon, and Virginia A Zakian. “S. cerevisiae Tel1p and Mre11p are required for normal levels of Est1p and Est2p telomere association.”. Mol Cell 24.4 (2006): , 24, 4, 603-10. Web.Abstract
In diverse organisms, the Mre11 complex and phosphoinositide 3-kinase-related kinases (PIKKs), such as Tel1p and Mec1p from S. cerevisiae, are key mediators of DNA repair and DNA damage checkpoints that also function at telomeres. Here, we use chromatin immunoprecipitation (ChIP) to determine if Mre11p, Tel1p, or Mec1p affects telomere maintenance by promoting recruitment of telomerase subunits to S. cerevisiae telomeres. We find that recruitment of Est2p, the catalytic subunit of telomerase, and Est1p, a telomerase accessory protein, was severely reduced in mre11Delta and tel1Delta cells. In contrast, the levels of Est2p and Est1p binding in late S/G2 phase, the period in the cell cycle when yeast telomerase lengthens telomeres, were indistinguishable in wild-type (WT) and mec1Delta cells. These data argue that Mre11p and Tel1p affect telomere length by promoting telomerase recruitment to telomeres, whereas Mec1p has only a minor role in telomerase recruitment in a TEL1 cell.
Muller, Carol B, et al.Gender differences and performance in science.”. Science 307.5712 (2005): , 307, 5712, 1043. Web.
Fisher, Timothy S, and Virginia A Zakian. “Ku: a multifunctional protein involved in telomere maintenance.”. DNA Repair (Amst) 411 (2005): , 4, 11, 1215-26. Web.Abstract
The DNA-binding protein Ku plays a critical role in a variety of cellular processes, including the repair of double-stranded DNA breaks and V(D)J recombination. Paradoxically, while Ku is required for double-stranded break repair by non-homologous end-joining, in many organisms, Ku is also associated with telomeres. Although telomeres are naturally occurring double-stranded DNA breaks, one of their first identified functions is to protect chromosomes from end-to-end fusions, a process that is promoted by non-homologous end-joining. While located at telomeres, Ku appears to play several important roles, including: (1) regulating telomere addition, (2) protecting telomeres from recombination and nucleolytic degradation, (3) promoting transcriptional silencing of telomere-proximal genes and (4) nuclear positioning of telomeres. Here, we review the role of Ku at telomeres in the model organism, Saccharomyces cerevisiae and compare and contrast it to the roles of Ku at telomeres in other organisms.
Boulé, Jean-Baptiste, Leticia R Vega, and Virginia A Zakian. “The yeast Pif1p helicase removes telomerase from telomeric DNA.”. Nature 438.7064 (2005): , 438, 7064, 57-61. Web.Abstract
Telomeres are the physical ends of eukaryotic chromosomes. Genetic studies have established that the baker's yeast Pif1p DNA helicase is a negative regulator of telomerase, the specialized reverse transcriptase that maintains telomeric DNA, but the biochemical basis for this inhibition was unknown. Here we show that in vitro, Pif1p reduces the processivity of telomerase and releases telomerase from telomeric oligonucleotides. The released telomerase is enzymatically active because it is able to lengthen a challenger oligonucleotide. In vivo, overexpression of Pif1p reduces telomerase association with telomeres, whereas depleting cells of Pif1p increases the levels of telomere-bound Est1p, a telomerase subunit that is present on the telomere when telomerase is active. We propose that Pif1p helicase activity limits telomerase action both in vivo and in vitro by displacing active telomerase from DNA ends.
Bessler, Jessica B, and Virginia A Zakian. “The amino terminus of the Saccharomyces cerevisiae DNA helicase Rrm3p modulates protein function altering replication and checkpoint activity.”. Genetics 168.3 (2004): , 168, 3, 1205-18. Web.Abstract
The Pif1 family of DNA helicases is conserved from yeast to humans. Although the helicase domains of family members are well conserved, the amino termini of these proteins are not. The Saccharomyces cerevisiae genome encodes two Pif1 family members, Rrm3p and Pif1p, that have very different functions. To determine if the amino terminus of Rrm3p contributes to its role in promoting fork progression at >1000 discrete chromosomal sites, we constructed a deletion series that lacked portions of the 249-amino-acid amino terminus. The phenotypes of cells expressing alleles that lacked all or most of the amino terminus were indistinguishable from those of rrm3Delta cells. Rrm3p deletion derivatives that lacked smaller portions of the amino terminus were also defective, but the extent of replication pausing at tRNA genes, telomeres, and ribosomal DNA (rDNA) was not as great as in rrm3Delta cells. Deleting only 62 amino acids from the middle of the amino terminus affected only rDNA replication, suggesting that the amino terminus can confer locus-specific effects. Cells expressing a fusion protein consisting of the Rrm3p amino terminus and the Pif1p helicase domain displayed defects similar to rrm3Delta cells. These data demonstrate that the amino terminus of Rrm3p is essential for Rrm3p function. However, the helicase domain of Rrm3p also contributes to its functional specificity.
Fisher, Timothy S, Andrew KP Taggart, and Virginia A Zakian. “Cell cycle-dependent regulation of yeast telomerase by Ku.”. Nat Struct Mol Biol 11.12 (2004): , 11, 12, 1198-205. Web.Abstract
The heterodimeric Ku complex affects telomere structure in diverse organisms. We report here that in the absence of Ku, the catalytic subunit of telomerase, Est2p, was not telomere-associated in G1 phase, and its association in late S phase was decreased. The telomere association of Est1p, a telomerase component that binds telomeres only in late S phase, was also reduced in the absence of Ku. The effects of Ku on telomerase binding require a 48-nucleotide (nt) stem-loop region of TLC1 telomerase RNA. Ku interacts with TLC1 RNA via this 48-nt region throughout the cell cycle, but this interaction was reduced after telomere replication. These data support a model in which Ku recruits telomerase to telomeres in G1 phase when telomerase is inactive and promotes telomerase-mediated telomere lengthening in late S phase.
Torres, Jorge Z, Jessica B Bessler, and Virginia A Zakian. “Local chromatin structure at the ribosomal DNA causes replication fork pausing and genome instability in the absence of the S. cerevisiae DNA helicase Rrm3p.”. Genes Dev 18.5 (2004): , 18, 5, 498-503. Web.Abstract
Lack of the yeast Rrm3p DNA helicase causes replication defects at multiple sites within ribosomal DNA (rDNA), including at the replication fork barrier (RFB). These defects were unaltered in rrm3 sir2 cells. When the RFB binding Fob1p was deleted, rrm3-generated defects at the RFB were eliminated, but defects at other rDNA sites were not affected. Thus, specific protein-DNA complexes make replication Rrm3p-dependent. Because rrm3-induced increases in recombination and cell cycle length were only partially suppressed in rrm3 fob1 cells, which still required checkpoint and fork restart activities for viability, non-RFB rrm3-induced defects contribute to rDNA fragility and genome instability.
Torres, Jorge Z, Sandra L Schnakenberg, and Virginia A Zakian. “Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities.”. Mol Cell Biol 24.8 (2004): , 24, 8, 3198-212. Print.Abstract
Rrm3p is a 5'-to-3' DNA helicase that helps replication forks traverse protein-DNA complexes. Its absence leads to increased fork stalling and breakage at over 1,000 specific sites located throughout the Saccharomyces cerevisiae genome. To understand the mechanisms that respond to and repair rrm3-dependent lesions, we carried out a candidate gene deletion analysis to identify genes whose mutation conferred slow growth or lethality on rrm3 cells. Based on synthetic phenotypes, the intra-S-phase checkpoint, the SRS2 inhibitor of recombination, the SGS1/TOP3 replication fork restart pathway, and the MRE11/RAD50/XRS2 (MRX) complex were critical for viability of rrm3 cells. DNA damage checkpoint and homologous recombination genes were important for normal growth of rrm3 cells. However, the MUS81/MMS4 replication fork restart pathway did not affect growth of rrm3 cells. These data suggest a model in which the stalled and broken forks generated in rrm3 cells activate a checkpoint response that provides time for fork repair and restart. Stalled forks are converted by a Rad51p-mediated process to intermediates that are resolved by Sgs1p/Top3p. The rrm3 system provides a unique opportunity to learn the fate of forks whose progress is impaired by natural impediments rather than by exogenous DNA damage.
Vega, Leticia R, Maria K Mateyak, and Virginia A Zakian. “Getting to the end: telomerase access in yeast and humans.”. Nat Rev Mol Cell Biol 412 (2003): , 4, 12, 948-59. Web.